Soil organic matter (OM) stratification and macro and micro fauna are both good indicators for the evaluation of soil ecological functioning, which is interrelated with nutrient cycles. To the best of the authors’ knowledge, responses of the degree of OM stratification with soil depth expressed as a ratio, and belowground biota to forest degradation and land cover changes have received little attention, particularly in northern Iran.
Elucidating relationships between the soil food web, soil processes, and agroecosystem function is a critical step toward a more sustainable agriculture. Soil and crop management practices can alter these relationships, and their effects can persist even after imposing new management practices. In 2005, the Cornell Organic Grain Cropping Systems Experiment was established in central New York. Four cropping systems that varied in fertilizer inputs, tillage practices, and weed control were compared: High Fertility, Low Fertility, Enhanced Weed Management, Reduced Tillage.
It has long been established that the spatial scale of inquiry affects the ecological patterns that are revealed. However, studies of the ecological drivers underlying the assembly of soil animal communities rarely adopt a multi-scale perspective. Here, we quantified the distribution of oribatid richness along a chronosequence of temperate hardwood forests in a deglaciated region of eastern North America and analyzed variation in oribatid community structure at two grain sizes: 0.1 m2 and 900 m2, and two spatial extents: 20–150 m and 80–420 km.