Rho-associated coiled-coil kinase (ROCK), a serine/threonine kinase regulated by the small GTPase RhoA, is involved in regulating cell migration, proliferation, and survival. Numerous studies have shown that the RhoA/ROCK signaling pathway can promote Alzheimer's disease (AD) occurrence. ROCK activation increases β-secretase activity and promotes amyloid-beta (Aβ) production; moreover, Aβ further activates ROCK. This is suggestive of a possible positive feedback role for Aβ and ROCK. Moreover, ROCK activation promotes the formation of neurofibrillary tangles and abnormal synaptic contraction.
Background: The pathological changes in Alzheimer's Disease (AD) and other neurodegenerative disorders begin decades prior to their clinical expression. However, the clinical diagnosis of neurodegenerative dementias is not straightforward. Lactoferrin is an iron-binding, antimicrobial glycoprotein with a plethora of functions, including acting as an important immune modulator and by having a bacteriocidic effect. Two previous studies indicated that salivary lactoferrin could differentiate between neurodegenerative dementias.
Background and Purpose: Altered cholesterol metabolism is associated with increased risk of neurodegeneration and in particular with the development of Alzheimer's disease (AD). Here, we investigate whether non-cholesterol sterols and oxysterols in the central nervous system are associated with (i) the presence of cerebral AD pathology, (ii) distinct aspects of AD pathology, i.e. amyloid pathology, neuronal injury, and tau pathology, and (iii) cognitive decline over time.
Background: Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models. Methods: Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aβ uptake. Genome edited human induced pluripotent stem cells (iPSC) were used as a model system with the human context.
Objectives: The mechanisms leading to neurodegeneration in Alzheimer's disease (AD) may involve oxidative stress and neuroinflammation. Ceruloplasmin (Cp) is a circulating protein that intersects both these pathways, since its expression is increased during the acute phase response, and the protein acts to lower pro-oxidant iron in cells. Since the role of Cp in AD, and its potential for use as a biomarker is not established, we investigated CSF Cp and its association with longitudinal outcome measures related to AD.
Background: Evidences of infectious pathogens in Alzheimer's disease (AD) brains may suggest a deteriorated innate immune system in AD pathophysiology. We previously demonstrated reduced salivary lactoferrin (Lf) levels, one of the major antimicrobial proteins, in AD patients. Methods: To assess the clinical utility of salivary Lf for AD diagnosis, we examine the relationship between salivary Lf and cerebral amyloid-β (Aβ) load using amyloid-Positron-Emission Tomography (PET) neuroimaging, in two different cross-sectional cohorts including patients with different neurodegenerative disorders.