Cell Proliferation

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite increased screening options and state-of-art treatments offered in clinics, racial differences remain in CRC. African Americans (AAs) are disproportionately affected by the disease; the incidence and mortality are higher in AAs than Caucasian Americans (CAs). At the time of diagnosis, AAs more often present with advanced stages and aggressive CRCs, primarily accounting for the racial differences in therapeutic outcomes and mortality.
Elsevier, Behavioural Brain Research, Volume 414, 24 September 2021
Rho-associated coiled-coil kinase (ROCK), a serine/threonine kinase regulated by the small GTPase RhoA, is involved in regulating cell migration, proliferation, and survival. Numerous studies have shown that the RhoA/ROCK signaling pathway can promote Alzheimer's disease (AD) occurrence. ROCK activation increases β-secretase activity and promotes amyloid-beta (Aβ) production; moreover, Aβ further activates ROCK. This is suggestive of a possible positive feedback role for Aβ and ROCK. Moreover, ROCK activation promotes the formation of neurofibrillary tangles and abnormal synaptic contraction.
Glucose-dependent Insulinotropic polypeptide (GIP) is a peptide hormone of the incretin family. It has growth factor properties and can re-activate energy utilization. In progressive neurodegenerative disorders such as Alzheimer's and Parkinson's disease, energy utilization is much reduced, and GIP has the potential to reverse this. Furthermore, GIP can reduce the inflammation response in the brain and reduce levels of pro-inflammatory cytokines. Tests in animal models of Alzheimer's and Parkinson's disease show good neuroprotective effects.
Nanotechnology provides an emerging potent alternate mode of cancer therapy. Nanomaterials dispersion or solubility is of particular concern in utilising their full potential applications in biomedical fields. PEGylation of nanomaterials is considered to provide products with stealth properties, and physiological environment with no obvious adverse effects. The purpose of this work was to develop a sustainable one-step method for fabrication of hierarchical microspheres of PEGylated MoS 2 nanosheets using a stoichiometric ratio of Mo(VI) and thiourea.