Chitosan

Elsevier, Innovative Food Science and Emerging Technologies, Volume 62, June 2020
Chitin is the structural material of crustaceans, insects, and fungi, and is the second most abundant biopolymer after cellulose on earth. Chitosan, a deacetylated derivative of chitin, can be obtained by deacetylation of chitin. It is a functionally versatile biopolymer due to the presence of amino groups responsible for the various properties of the polymer. Although it has been used for various industrial applications, the recent one is its use as a biodegradable antimicrobial food packaging material.
Improvements in the effectiveness of packaging materials can help to prevent foodborne pathogens and reduce environmental waste. Traditionally, food is packaged in plastic that is rarely recyclable, negatively impacting the environment. Biodegradable packaging materials play an important role in maintaining the health of ecosystems. However, there are limitations in the utilization of bio-based materials, including poor barrier and mechanical properties which frequently cause a shorter shelf life compared to conventional food packaging materials.
Improvements in the effectiveness of packaging materials can help to prevent foodborne pathogens and reduce environmental waste. Traditionally, food is packaged in plastic that is rarely recyclable, negatively impacting the environment. Biodegradable packaging materials play an important role in maintaining the health of ecosystems. However, there are limitations in the utilization of bio-based materials, including poor barrier and mechanical properties which frequently cause a shorter shelf life compared to conventional food packaging materials.
A cationic chelating polymer, namely biopolymer chitosan CHI with a molecular weight of 117 kDa is employed in the present study to bring about the retention of azoic dyes from its aqueous solutions by way of polymer enhanced ultrafiltration (PEUF). The effects of process parameters, namely, operating time, CHI and sodium chloride concentrations, transmembrane pressure, and pH of solution on the retention rate and permeate flux were examined.