As an important component of global change, plant invasion threaten the sustainability of global ecosystems and may alter the carbon dynamics in the invaded area. Knowledge of the effects of Spartina alterniflora invasion on soil organic carbon (SOC) and soil inorganic carbon (SIC) stocks and their profile distribution is limited in coastal salt marshes, which are referred as important “blue carbon” ecosystems. A short-term invasion chronosequence of 2–10 years was used to evaluate the responses of SOC and SIC over the invasion period in the Yellow River Estuary, China.
The biochemical effects of trees may significantly influence local pedogenesis as well as pedocomplexity, biodiversity and forest dynamics on both stand and landscape scales. One such effect is the decay of tree trunks, which is driven by organisms, and especially by the microbiome. Decomposition modifies soil formation, which due to the existence of many feedbacks affects the composition of the decomposer community.
It has long been established that the spatial scale of inquiry affects the ecological patterns that are revealed. However, studies of the ecological drivers underlying the assembly of soil animal communities rarely adopt a multi-scale perspective. Here, we quantified the distribution of oribatid richness along a chronosequence of temperate hardwood forests in a deglaciated region of eastern North America and analyzed variation in oribatid community structure at two grain sizes: 0.1 m2 and 900 m2, and two spatial extents: 20–150 m and 80–420 km.
Ectomycorrhizal (ECM) fungi are crucial in the functioning of most forest ecosystems. Increased understanding of ECM symbiosis has led to numerous advancements in environment protection and forestry. The ECM fungi are a diverse group, both phylogenetically and functionally. Research covering their community structure on distinct sites shows that the presence of certain taxa depends on particular stand traits, such as tree species and age structure.