Circular Economy

Urban regions in sub-Saharan Africa are growing significantly more rapid than their also growing rural counterparts. However, the employment perspectives in rural areas are decreasing, and thus the urban growth can become a driver for enhanced livelihoods in the rural areas.
Elsevier, Sustainable Chemistry and Pharmacy, Volume 18, December 2020
In this essay some important forerunners of green chemistry will be discussed and compared with the present state. The relationship to ethics will be considered. Starting from the new movement of green chemistry by Anastas, some important highlights will be presented. The new activities of IUPAC and other institutions on the concepts of metrics for green syntheses will be discussed. The prime importance of the inclusion of developing African countries into the concepts will also be covered.
Circular economy strategies seek to reduce the total resources extracted from the environment and reduce the wastes that human activities generate in pursuit of human wellbeing. Circular Economy concepts are well suited to the building and construction sector in cities. For example, refurbishing and adaptively reusing underutilized or abandoned buildings can revitalize neighborhoods whilst achieving environmental benefits. Cultural heritage buildings hold a unique niche in the urban landscape.
The recovery of resources from waste streams including food production plants can improve the overall sustainability of such processes from both economic and environmental points of view. This is because resource recovery solutions will be instrumental in overcoming the grand societal challenges in relation to the Water-Energy-Food (WEF) nexus in one of many aspects.
The utilization of existing metallurgical infrastructure and integration of secondary process streams into primary metals production can provide advantages over separate recycling plants. This paper focuses on the integration of a pregnant leach solution (PLS) into a nickel production plant that contains Ni, Co, Zn, Mn, Fe, Al and Cd ions, derived from a NiMH recycling stream.
Waste Li foils in the spent experimental Li-coin-cells may bring the potential risk and the waste of Li-resource if they aren't reasonably treated in time. For this purpose, waste Li foils were recycled in the form of black LiFePO4/C powders with the recovery of about 80% in this work.
Elsevier, Procedia Manufacturing, Volume 8, 2017
Sustainable manufacturing extends beyond the manufacturing process and the product, to include the supply chain, across multiple product life-cycles as well as end-of-life considerations. Companies can gain a competitive advantage by applying sustainability manufacturing for environmental friendlier products and operations. Industry 4.0 sets new requirements for becoming a sustainable manufacturer where data management, the Internet of Things and extended product service systems are tightly linked with traditional manufacturing processes.
The European Union (EU) has had laws on the disposal of waste for over 30 years and laws concerning the environmental performance of products for over 20. However, these laws have not formed a cohesive whole - and that is about to change. December 2015 saw the European Commission (the body responsible for proposing new EU legislation) published its Circular Economy Package, with the stated objective of "closing the loop" of product lifecycles. This paper provides an overview of this package and demonstrates why the development of standards underpins future legislation.