Composite

PET is a ubiquitous material because of its robust properties. Today, less than 30% of PET bottles and few carpets are recycled in the United States, leading to the majority of PET being landfilled. The low PET reclamation rate is due to the fact that PET bottle recycling today is mechanical, resulting in a devalued product. Here, reclaimed PET (rPET) bottles are converted to fiberglass-reinforced plastics (FRPs), which sell for more than twice that of rPET. When monomers derivable from biomass are incorporated, rPET-FRPs with superior properties are achieved.
Membrane (bio)fouling is a major obstacle to many separation and purification processes. Due to the inherent physicochemical properties of some thin film composite membrane surfaces such as polyamide, these are prone to (bio)fouling. Hence, this review highlights recent advances in the design and development of highly resistant thin film composite membrane through surface modification by either coating or grafting with antifouling polymers and/or antimicrobial polymers/biocidal inorganic nanoparticles.