Cover Crop

Viticulture is a valuable sector worldwide with an extraordinary socio-economic impact in Spain. Numerous pests and diseases threaten vineyards, and their management primarily relies on the use of conventional agrochemicals. The current paradigm of sustainability pursues the implementation of ecologically sound strategies in vineyard ecosystems. The use of cover crops is arising as an alternative with numerous benefits, including favoring above-belowground biodiversity and the presence of beneficial soil organisms such as the entomopathogenic nematodes (EPNs).

Tillage is the most common agricultural practice dating back to the origin of agriculture. In recent decades, no-tillage (NT) has been introduced to improve soil and water quality. However, changes in soil properties resulting from long-term NT can increase losses of dissolved phosphorus, nitrate and some classes of pesticides, and NT effect on nitrous oxide (N2O) emission remains controversial. Complementary management that enhances the overall environmental benefits of NT is therefore crucial.

Elsevier, Agriculture, Ecosystems and Environment, Volume 292, 15 April 2020
Nitrous oxide (N2O) is the most important greenhouse gas produced by agricultural soils and is a byproduct of microbial nitrification and denitrification processes. The N2O emission rates depend on soil, climatic and management factors. The objectives of this study were i) to evaluate N2O emissions during a barley crop period and its subsequent barley-maize interperiod, under two management systems, and ii) to relate the N2O flux rates with soil mineral N content, waterfilled pore space (WFPS) and soil temperature.
Land-use intensification at the field and landscape scale is a strong driver for declining biodiversity and ecosystem service provision. Vineyards are characterised by non-productive inter-rows, which could potentially host diverse plant communities. Mulching, tillage or herbicides are used to mitigate the competition between vines and the inter-row vegetation.
The no-tillage system combining winter cover crops and crop rotation may increase the efficiency use of soil P and phosphate fertilizer. The objective of this study was to evaluate the effect of three decades of different soil management systems and winter cover crops on the fractions of P in a clayey Oxisol of Paraná State, Brazil. The bi-factorial experiment with three replicates was established in 1986. The main plots consisted of seven winter cover crops. In the subplots, two tillage systems were used: no-tillage and conventional tillage.
When biochar (BC) ages in soil, its properties change substantially: cation exchange capacity (CEC), surface area and porosity increase and water repellency decreases, consequently affecting the interactions with soil microorganisms. Activation of BC by organic acids may be regarded as artificial aging. Here, we study the effect of acid-activated BCs on soil microbial enzyme activities (EA) in comparison to several different control treatments without activated BC. A greenhouse pot experiment was conducted using a vineyard soil treated with multiple soil additives (four replications).