Crop Yield

Elsevier, Soil Biology and Biochemistry, Volume 143, April 2020
Improving rice yield potential is crucial for global food security. Taoyuan, China, is famous worldwide as a special ecosite for ultrahigh rice yield. Climatological factors affecting this phenomenon have been identified, but the potential molecular processes and environmental mechanisms promoting ultrahigh yield remain mysteries.
A grand challenge facing humanity is how to produce food for a growing population in the face of a changing climate and environmental degradation. Although empirical evidence remains sparse, management strategies that increase environmental sustainability, such as increasing agroecosystem diversity through crop rotations, may also increase resilience to weather extremes without sacrificing yields.
Elucidating relationships between the soil food web, soil processes, and agroecosystem function is a critical step toward a more sustainable agriculture. Soil and crop management practices can alter these relationships, and their effects can persist even after imposing new management practices. In 2005, the Cornell Organic Grain Cropping Systems Experiment was established in central New York. Four cropping systems that varied in fertilizer inputs, tillage practices, and weed control were compared: High Fertility, Low Fertility, Enhanced Weed Management, Reduced Tillage.
Historically, tillage has been essential for seedbed preparation and weed control, but it has also accelerated soil degradation through erosion and loss of soil organic matter (SOM). Our objective was to quantify the changes in soil physical properties and earthworm abundance under six tillage treatments on an Endocalcic Chernozem (Loamic) soil (2016 and 2017).
Rising demand for renewable resources has increased silage maize (Zea mays L.)production characterized by intensive soil management, high fertilizer and pesticide inputs as well as simplified crop rotations. Advantages of renewable biomass production may thus be cancelled out by adverse environmental effects. Perennial crops, like cup plant (Silphium perfoliatum L.), are said to benefit arthropods. Substituting silage maize could hence increase biodiversity and foster ecosystem services.
Although the effects of nitrogen (N) fertilization on soil microflora have been well studied, the effects should be verified across soil types and N-added levels. To understand the impacts of N fertilization on shifts in soil biological traits and bacterial communities and to further explore the coupling mediation of these parameters with respect to crop yields, we sampled soils from three experimental sites (each site received three levels of N fertilization (0, 168 and 312 kg N ha−1)) that share the same climatic conditions but have different soil types (clay, alluvial and sandy soils).
Multiple nutrient deficiencies related to severe soil fertility depletion have emerged as the major constraint to the sustainability of agriculture on a global scale. Use of biochar and biochar-compost mixtures from different alternative organic sources have been proposed as an option for improving soil fertility, restoring degraded land, and mitigating the emissions of greenhouse gasses associated with agriculture.
Despite much policy attention to agricultural development in South Africa, efforts since democratisation have failed to raise smallholder engagement in agriculture and to break the trend of persistent rural poverty. This paper presents results from a study of the Massive Food Production Programme (MFPP) in three villages in Eastern Cape Province, South Africa. The MFPP aimed to reduce poverty by raising maize yields.