Diagnostic Accuracy

Elsevier, Digital Signal Processing: A Review Journal, Volume 119, December 2021
The field of digital histopathology has seen incredible growth in recent years. Digital pathology is becoming a relevant tool in healthcare, industrial and research sectors to reduce the saturation of pathology departments and improve the productivity of pathologists by increasing diagnostic accuracy and reducing turnaround times. Artificial Intelligence (AI) algorithms may be used for the identification of relevant regions, extraction of features from a histological image and overall classification of images into specific classes.
Elsevier, Biomedical Signal Processing and Control, Volume 65, March 2021
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain that ultimately results in the death of neurons and dementia. The prevalence of the disease in the world is increasing rapidly. In recent years, many studies have been done to automatically detect this disease from brain signals. Method: In this paper, the Hjorth parameters are used along with other common features to improve the AD detection accuracy from EEG signals in early stages.
Objective imaging-based biomarker discovery for psychiatric conditions is critical for accurate diagnosis and treatment. Using a machine learning framework, this work investigated the utility of brain's functional network topology (complex network features) extracted from functional magnetic resonance imaging (fMRI) functional connectivity (FC) as viable biomarker of autism spectrum disorder (ASD). To this end, we utilized resting-state fMRI data from the publicly available ABIDE dataset consisting of 432 ASD patients and 556 matched healthy controls.
At the start of 2020, the 2019 coronavirus disease (COVID-19), originating from China has spread to the world. There have been increasing numbers of confirmed cases and deaths around the globe. The COVID-19 pandemic has paved the way for considerable psychological and psychosocial morbidity among the general public and health care providers. An array of guidelines has been put forward by multiple agencies for combating mental health challenges. This paper addresses some of the mental health challenges faced by low and middle income countries (LMIC).
Alzheimer's disease is the most common form of dementia and is a serious health problem. The disease is expected to increase further in the upcoming years with the increase of the elderly population. Developing new treatments and diagnostic methods is getting more important. In this study, we focused on the early diagnosis of dementia in Alzheimer's disease via analysis of neuroimages. We analyzed the data diagnosed by the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol.
Clinical assessment of speech abnormalities in Cerebellar Ataxia (CA) is subjective and prone to intra- and inter-clinician inconsistencies. This paper presents an automated objective method based on a single syllable repetition task to detect and quantify speech-timing anomalies in ataxic speech. Such a technique is non-invasive, reliable, fast, cost-effective and can be used in the comfort of home without any professional assistance.