Digital Storage

Fatty alcohols (FAs) have been widely studied as typical phase-change materials for their high latent heat, low undercooling, non-toxicity, and low cost in thermal energy storage applications. The thermal properties, especially the heat capacity, play a vital role in designing-related energy storage techniques. However, there are few studies on the thermal properties of FAs systematically investigated in a wide temperature region, which greatly limit their application in thermal energy storage field.
The natural world has multiple, sometimes conflicting, sometimes synergistic, values to society when viewed through the lens of the Sustainable Development Goals (SDGs), Spatial mapping of nature's contributions to the SDGs has the potential to support the implementation of SDG strategies through sustainable land management and conservation of ecosystem services. Such mapping requires a range of spatial data.
The Sustainable Development Goals and the Paris Agreement, as the two biggest climate action initiatives, address the need to shift towards a fully sustainable energy system. The deployment of renewable energy, especially solar and wind power, decreases carbon dioxide emissions, but presents issues of resource intermittency. In this study, a cost-optimised 100% renewable energy based system is analysed and quantified for the Americas for the reference year 2030 using high spatially and temporally resolved weather data.
Falling prices and significant technology developments currently drive an increased weather-dependent electricity production from renewables. In light of the changing climate, it is relevant to investigate to what extent climate change directly impacts future highly weather-dependent electricity systems. Here, we use three IPCC CO 2 concentration pathways for the period 2006–2100 with six high-resolution climate experiments for the European domain.
Ground source heat pumps (GSHPs) have been suggested to replace gas-based heating in urban environments to reduce greenhouse gas emissions and help to comply with the Paris Agreement. The emission reduction from GSHP depends on the carbon intensity of the electricity generation mix. Moreover, grid capacity may be limiting the introduction of these high-electricity demand GSHP systems. Photovoltaics (PV) systems help to provide additional emission reductions for residential GSHP systems.
Elsevier, Resources, Conservation and Recycling, Volume 137, October 2018
A policy and research agenda has emerged in recent years to understand the interconnected risks natural resource systems face and drive. The so-called ‘Food-Energy-Water’ (FEW) nexus has served as a focal point for the conceptual, theoretical and empirical development of this agenda. This special issue provides an opportunity to reflect on whether natural resource use, as viewed through the FEW-nexus lens, provides a useful basis for guiding integrated environmental management.
Elsevier, Journal of Cleaner Production, Volume 140, 1 January 2017
The last few years have seen a phenomenal upsurge in the number of corporate bankruptcies. The vulnerabilities that were lying dormant within contemporary bankruptcy regimes suddenly became apparent, causing concerns within the international corporate community. Consequently, researchers, practitioners, and policy makers from all over the world became actively engaged in emphasizing the importance of efficient bankruptcy reforms to promote a rescue culture.
The sustainability of water resources depends on the dynamic interactions among the environmental, technological, and social characteristics of the water system and local population. These interactions can cause supply-demand imbalances at diverse temporal scales, and the response of consumers to water use regulations impacts future water availability. This research develops a dynamic modeling approach to simulate supply-demand dynamics using an agent-based modeling framework that couple models of consumers and utility managers with water system models.