This article contributes to research on public policy and water sanitation.
In this paper, we address the problem of humanitarian aids distribution across refugee camps in war-ridden areas from a network design perspective. We show that the problem can be modeled as a variant of multi-period hub location problem with a particular demand pattern resulted by the user's behavior. The problem has been motivated by a case study of Lebanese experience in Syrian war refugee accommodation. We elaborate on the complexity and real-life constraints and, propose a compact formulation of a mathematical model of the problem.
The refugee crisis is one of the major challenges of modern society. The influxes of refugees are usually sudden and the refugees are in sheer need of services such as health care, education and safety. Planning public services under an imminent humanitarian crisis requires simultaneous strategic and operational decisions. Inspired by a real-world problem that Red Crescent is facing in Southeast Turkey, we study the problem of locating refugee camps and planning transportation of public service providers from their institutions to the located camps.
Tillage is the most common agricultural practice dating back to the origin of agriculture. In recent decades, no-tillage (NT) has been introduced to improve soil and water quality. However, changes in soil properties resulting from long-term NT can increase losses of dissolved phosphorus, nitrate and some classes of pesticides, and NT effect on nitrous oxide (N2O) emission remains controversial. Complementary management that enhances the overall environmental benefits of NT is therefore crucial.