Energy Efficient

Globally, 2.6 billion people still cook with biomass, resulting in interlinked health, environmental and drudgery challenges. The uptake of improved biomass cookstoves has barely kept up with population growth, yet SDG7 hopes for universal access to modern energy by 2030. This paper explores a potentially transformative new approach to facilitate access to affordable, reliable, sustainable and modern energy for cooking by leveraging rapid progress in electrification and falling prices of solar PV and lithium-ion batteries: battery-supported electric cooking.
Elsevier, Trends in Food Science and Technology, Volume 106, December 2020
Background: Agricultural production in controlled indoor farming offers a reliable alternative to food and nutrition supply for densely populated cities and contributes to addressing the impending food insecurity. Leafy vegetables, rich in vitamins, minerals, fibres and antioxidants, account for over half of the indoor farming operations worldwide. Light is the foremost environmental factor for plant growth and development, and the success of indoor farming largely depends on lighting qualities.
Elsevier, Innovative Food Science and Emerging Technologies, Volume 62, June 2020
Chitin is the structural material of crustaceans, insects, and fungi, and is the second most abundant biopolymer after cellulose on earth. Chitosan, a deacetylated derivative of chitin, can be obtained by deacetylation of chitin. It is a functionally versatile biopolymer due to the presence of amino groups responsible for the various properties of the polymer. Although it has been used for various industrial applications, the recent one is its use as a biodegradable antimicrobial food packaging material.
This paper examines the potential of energy saving in electrical consumption if the concept of energy-efficient house is implemented in Oman. Energy consumption in the residential sector in Oman was critically analysed and forecasted based on its growth rate and its historical consumption. Then, a base-case validated simulation model for a typical residential dwelling in different cities was generated using a dynamic building simulation software, covering a wide variation of climate conditions in Oman.
The rapidly growing and gigantic body of stored data in the building field, coupled with the need for data analysis, has generated an urgent need for powerful tools that can extract hidden but useful knowledge of building performance improvement from large data sets. As an emerging subfield of computer science, data mining technologies suit this need well and have been proposed for relevant knowledge discovery in the past several years. Aimed to highlight recent advances, this paper provides an overview of the studies undertaking the two main data mining tasks (i.e.