Energy Utilization

This work established a framework to identify and analyze the technical feasibility of roofs for integrating urban agriculture, rainwater harvesting, and photovoltaic systems using various remote sensing. The framework was applied to a region north of Barcelona. Three levels of solar access requirements for tomatoes, leafy crops, strawberries, and microgreens were established. The case study included compact and disperse urban forms, residential and nonresidential building uses and various building typologies.
Graphical abstract
In this review, the authors discuss the drivers, fundamental science, and potential enabling materials for high selectivity membranes, as well as their applications in different water treatment processes.
A diagram of the authors' 3-layer Internet of Things architecture.
Monitoring the thermal comfort of building occupants is crucial for ensuring sustainable and efficient energy consumption in residential buildings. Existing studies have addressed the monitoring of thermal comfort through questionnaires and activities involving occupants. However, few studies have considered disabled people in the monitoring of thermal comfort, despite the potential for impairments to present thermal requirements that are significantly different from those of an occupant without a disability.
Elsevier, Transportation Research Part D: Transport and Environment, Volume 92, March 2021
Vehicle driving patterns greatly impact the sustainability of the transportation system. Based on V2X communication, the ecological cooperative adaptive cruise control (Eco-CACC) is proposed combing the advantages of eco-driving and car-following to minimize the energy consumption of the connected automated vehicles platoon. Herein, the vehicle platoon behavior in the scenario of driving through a signalized intersection exhibits great benefits for sustainability which is even improved along corridors with more traffic lights.
Buildings consume vast amounts of energy and pollute the environment in various ways. Façade is a part of building's architecture that can play a significant role in reducing energy consumption, as well as alleviating its negative environmental effects. Although using smart materials in buildings' facades can help dramatically to attain the mentioned goals, very limited studies have been conducted regarding the mentioned issues. Moreover, existing studies have investigated only a few number of smart materials simultaneously.
This study investigated the drying behaviour of purple-speckled Cocoyam and the effect of drying temperature (40 °C, 60 °C and 75 °C), slice thickness (4 mm, 7 mm and 10 mm) and pre-treatments (blanching in boiling water for 3 min, blanching in boiling water for 3 min followed by dipping in 0.1 per cent sodium metabisulfite for 5 min) and non-pre-treated slices. The process and quality criteria under consideration included the total drying time, rehydration ratio, colour difference, browning index and specific energy consumption.
Elsevier, International Journal of Human Computer Studies, Volume 137, May 2020
Addressing efficient management of energy has become a central objective due to the scarcity of traditional energy sources and global warming. To cope with this overarching issue, some technological solutions such as Smart Grids, Internet of Things or Demand response are proposed. However, the majority of them overlooks the role of human beings in the equation.
This review focuses on how culture can complicate and impede attempts at promoting more efficient, more sustainable, and often more affordable forms of mobility as well as energy use in homes and buildings. In simpler terms: it illustrates the cultural barriers to a low-carbon, low-energy future across 28 countries. Rather than focus on energy supply, it deals intently with energy end-use, demand, and consumption.
This paper examines the potential of energy saving in electrical consumption if the concept of energy-efficient house is implemented in Oman. Energy consumption in the residential sector in Oman was critically analysed and forecasted based on its growth rate and its historical consumption. Then, a base-case validated simulation model for a typical residential dwelling in different cities was generated using a dynamic building simulation software, covering a wide variation of climate conditions in Oman.
It is no secret to anyone living in Beirut or a similar modern city in a semi-arid tropical country in the summer that their home has become a concrete forest and an urban heat island. Old wood or stone houses and their gardens have been replaced by concrete towers and parking lots, in the name of development. The result is searing summer nights, a drastic loss of insect and avian biodiversity, and a large increase in energy usage for interior climate control. These problems are experienced in rapidly developing urban centers worldwide.