Environmental Impact

Producing food exerts pressures on the environment. Understanding the location and magnitude of food production is key to reducing the impacts of these pressures on nature and people. In this Perspective, Kuempel et al. outline an approach for integrating life cycle assessment and cumulative impact mapping data and methodologies to map the cumulative environmental pressure of food systems. The approach enables quantification of current and potential future environmental pressures, which are needed to reduce the net impact of feeding humanity.
Reductions in carbon emissions have been a focus of the power sector. However, the sector itself is vulnerable to the impacts of global warming. Extreme weather events and gradual changes in climate variables can affect the reliability, cost, and environmental impacts of the energy supply. This paper analyzed the interplay between CO2 mitigation attempts and adaptations to climate change in the power sector using the Long-range Energy Alternative Planning System (LEAP) model.
This paper is written for non-specialists in mitochondrial biology to provide access to an important area of science that has broad implications for all people. The cell danger response (CDR) is a universal response to environmental threat or injury. Once triggered, healing cannot be completed until the choreographed stages of the CDR are returned to an updated state of readiness. Although the CDR is a cellular response, it has the power to change human thought and behavior, child development, physical fitness and resilience, fertility, and the susceptibility of entire populations to disease.
Although numbers are still low compared to cattle rearing, intensive dairy goat farms have been widely spreading in the Italian livestock systems. Since goats are quite rustic, they can easily adapt to different management practices; however, improving the efficiency can make the difference, both in productivity and on the environmental impact attributed to goat milk production. In the present study, the Life Cycle Assessment (LCA) approach was used to quantify the potential environmental impact of goat milk production system in 17 farms in Lombardy (Northern Italy).
Circular economy strategies seek to reduce the total resources extracted from the environment and reduce the wastes that human activities generate in pursuit of human wellbeing. Circular Economy concepts are well suited to the building and construction sector in cities. For example, refurbishing and adaptively reusing underutilized or abandoned buildings can revitalize neighborhoods whilst achieving environmental benefits. Cultural heritage buildings hold a unique niche in the urban landscape.
The recovery of resources from waste streams including food production plants can improve the overall sustainability of such processes from both economic and environmental points of view. This is because resource recovery solutions will be instrumental in overcoming the grand societal challenges in relation to the Water-Energy-Food (WEF) nexus in one of many aspects.
Soil contamination by potentially toxic elements (PTEs) has led to adverse environmental impacts. In this review, we discussed remediation of PTEs contaminated soils through immobilization techniques using different soil amendments with respect to type of element, soil, and amendment, immobilization efficiency, underlying mechanisms, and field applicability. Soil amendments such as manure, compost, biochar, clay minerals, phosphate compounds, coal fly ash, and liming materials are widely used as immobilizing agents for PTEs.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 113, April 2019
Although the study of the effects of microplastics increased in the last years, terrestrial ecosystems remain less studied. In fact, the effects of microplastics in insects, the most abundant group of animals and major providers of key Ecosystem Services, are not well known despite the potential cascading negative effects on the ecosystems functioning in the habitats where they occur.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 112, March 2019
Plastics are an integral but largely inconspicuous part of human daily routines. Associated with a high production and single use nature of several products, small plastic particles became ubiquitous. Due to processes like water currents and winds, plastics may occur far from their place of origin and affect biota at different environmental compartments. In the environment plastics can degrade into increasingly smaller particles, reaching a nanometer size which increases their potential to be incorporated by organisms.
Elsevier, Materials Today Sustainability, Volume 3-4, March 2019
The built environment is responsible for large negative ecological impacts due in part to the vast amount of materials used in construction. Concurrently, construction and demolition activities result in vast amounts of materials being buried, burnt, and dumped. It is essential therefore to analyze the impact of building materials acquisition, use, and transformation on the ecosystems people inhabit and rely upon for well-being. Typically, this is examined in terms of material use, energy use, and emission of pollutants including greenhouse gases.