Film

The recent sharp increase of sensitivity towards environmental issues arising from plastic packaging has boosted interest towards alternative sustainable packaging materials. This new trend promotes the industrial exploitation of knowledge on chitosan-based films. Chitosan has been extensively investigated and used due to its unique biological and functional properties. However, inherent drawbacks including low mechanical properties and high sensitivity to humidity represent major limitations to its industrial applications, including food packaging.
The recent sharp increase of sensitivity towards environmental issues arising from plastic packaging has boosted interest towards alternative sustainable packaging materials. This new trend promotes the industrial exploitation of knowledge on chitosan-based films. Chitosan has been extensively investigated and used due to its unique biological and functional properties. However, inherent drawbacks including low mechanical properties and high sensitivity to humidity represent major limitations to its industrial applications, including food packaging.
Membrane (bio)fouling is a major obstacle to many separation and purification processes. Due to the inherent physicochemical properties of some thin film composite membrane surfaces such as polyamide, these are prone to (bio)fouling. Hence, this review highlights recent advances in the design and development of highly resistant thin film composite membrane through surface modification by either coating or grafting with antifouling polymers and/or antimicrobial polymers/biocidal inorganic nanoparticles.