Concentrations of nine heavy metal (loid)s (HMs) were determined in fourteen different small indigenous species (SIS) of freshwater fish using atomic absorption spectrophotometer (AAS) technique. Mean concentrations of HMs in the investigated SIS of fish samples ranged from (0.284–1.554), (0.002–0.035), (0.055–0.431), (0.005–0.018), (0.011–0.252), (0.216–23.948), (0.460–34.616), (0.529–3.281), and (4.473–50.560) mg/kg-fw for Pb, Cd, Cr, As, Hg, Mn, Fe, Cu, and Zn, respectively. Statistically significant difference (p
Coral reefs worldwide are facing impacts from climate change, overfishing, habitat destruction, and pollution. The cumulative effect of these impacts on global capacity of coral reefs to provide ecosystem services is unknown. Here, we evaluate global changes in extent of coral reef habitat, coral reef fishery catches and effort, Indigenous consumption of coral reef fishes, and coral-reef-associated biodiversity. Global coverage of living coral has declined by half since the 1950s.
Temperature affects many life processes, but its effect might be expected to differ among eukaryotic organisms inhabiting similar environments. We reviewed literature on temperature thresholds of humans, livestock, poultry, agricultural crops, and sparse examples of fisheries. We found that preferable and harmful temperatures are similar for humans, cattle, pigs, poultry, fish, and agricultural crops. Preferable temperatures range from 17°C to 24°C. Stress temperature thresholds are lower when humidity is higher.
The clown anemonefish (Amphiprion ocellaris) is a common model species in studies assessing the impact of climate changes on tropical coral fish physiology, metabolism, growth, and stress. However, the basic endocrine principles for the control of food intake and energy homeostasis, under normal and elevated sea temperatures, in this species remain unknown. In this work, we studied food intake and growth in clown anemonefish reared at different temperatures and with different food availability.
Compared to other climate regions of the world, Mediterranean regions are likely to experience more severe effects of climate change as rainfall decreases and temperatures increase. Global climate change models predict a reduction in rainfall and rise in the temperature of rivers in South Africa's Cape Fold Ecoregion (CFE) – a Mediterranean region in the south-west corner of the country.
Approximately 70% of the aquatic-based production of animals is fed aquaculture, whereby animals are provided with high-protein aquafeeds. Currently, aquafeeds are reliant on fish meal and fish oil sourced from wild-captured forage fish. However, increasing use of forage fish is unsustainable and, because an additional 37.4 million tons of aquafeeds will be required by 2025, alternative protein sources are needed.
The current paper critically reviews the state-of-the-science on (1) microplastics (MP) types and particle concentrations in freshwater ecosystems, (2) MP and nanoplastics (NP) uptake and tissue translocation, (3) MP/NP-induced effects in freshwater organisms, and (4) capabilities of MP/NP to modulate the toxicity of environmental chemicals. The reviewed literature as well as new data on MP and NP concentrations in the river Elbe and on particle uptake into human cells indicate an environmental relevance of small particles in the low nano- and micrometer range higher than that of larger MP.
Increasing accessibility of coral reefs from the latter third of the 20th century led quickly to recognition of the vulnerability of coral reef communities to a combination of direct and indirect human impacts. Coral reefs are confronted by the stark threats of climate and ocean changes from the increasing number, intensity and forms of human use impacting global and marine systems. Management, particularly of accessible coral reefs, occurs in the context of multiple scale transboundary water column linkages of lifecycle processes and increasing human use of coastal and marine space.
Fisheries constitute an important source of livelihoods for tens of thousands of poor people in the southwest coastal region of Bangladesh, and they supply a significant portion of protein for millions. Among the various threats fisheries in the southwest coastal region will face because of climate change, adverse impacts from increased aquatic salinity caused by sea level rise will be one of the greatest challenges.
Background Information about the global structure of agriculture and nutrient production and its diversity is essential to improve present understanding of national food production patterns, agricultural livelihoods, and food chains, and their linkages to land use and their associated ecosystems services. Here we provide a plausible breakdown of global agricultural and nutrient production by farm size, and also study the associations between farm size, agricultural diversity, and nutrient production.