Restoring forest cover is a prominent option for climate mitigation. Effective deployment requires knowing where opportunities are and how they vary in carbon capture, costs, co-benefits, and feasibility. Here, we combined spatial, economic, and feasibility analyses to examine 10 different opportunity classes for restoration of forest cover across the contiguous United States. These include non-stocked forests, shrublands, protected areas, post-burn landscapes, pasture lands, croplands with challenging soils, urban areas, floodplains, streamsides, and biodiversity corridors.
The natural world has multiple, sometimes conflicting, sometimes synergistic, values to society when viewed through the lens of the Sustainable Development Goals (SDGs), Spatial mapping of nature's contributions to the SDGs has the potential to support the implementation of SDG strategies through sustainable land management and conservation of ecosystem services. Such mapping requires a range of spatial data.
Sustainable Development Goal (SDG) indicator 15.1.1 proposes to quantify “Forest area as a proportion of total land area” in order to achieve SDG target 15.1. While area under forest cover can provide useful information regarding discrete changes in forest cover, it does not provide any insight on subtle changes within the broad vegetation class, e.g. forest degradation. Continental or national-level studies, mostly utilizing coarse-scale satellite data, are likely to fail in capturing these changes due to the fine spatial and long temporal characteristics of forest degradation.