Global Change

Coral reefs worldwide are facing impacts from climate change, overfishing, habitat destruction, and pollution. The cumulative effect of these impacts on global capacity of coral reefs to provide ecosystem services is unknown. Here, we evaluate global changes in extent of coral reef habitat, coral reef fishery catches and effort, Indigenous consumption of coral reef fishes, and coral-reef-associated biodiversity. Global coverage of living coral has declined by half since the 1950s.
As an important component of global change, plant invasion threaten the sustainability of global ecosystems and may alter the carbon dynamics in the invaded area. Knowledge of the effects of Spartina alterniflora invasion on soil organic carbon (SOC) and soil inorganic carbon (SIC) stocks and their profile distribution is limited in coastal salt marshes, which are referred as important “blue carbon” ecosystems. A short-term invasion chronosequence of 2–10 years was used to evaluate the responses of SOC and SIC over the invasion period in the Yellow River Estuary, China.
Elsevier, Agriculture, Ecosystems and Environment, Volume 305, 1 January 2021
Critical knowledge gaps about environmental fate and unintentional effects of currently used pesticides (CUPs) hamper the understanding and mitigation of their global impacts on ecological processes. We investigated the exposure of earthworms to 31 multiclass CUPs in an arable landscape in France. We highlighted the presence of at least one pesticide in all soils (n = 180) and 92 % of earthworms (n = 155) both in treated crops and nontreated habitats (hedgerows, grasslands, and cereals under organic farming).
Elsevier, Agriculture, Ecosystems and Environment, Volume 305, 1 January 2021
Critical knowledge gaps about environmental fate and unintentional effects of currently used pesticides (CUPs) hamper the understanding and mitigation of their global impacts on ecological processes. We investigated the exposure of earthworms to 31 multiclass CUPs in an arable landscape in France. We highlighted the presence of at least one pesticide in all soils (n = 180) and 92 % of earthworms (n = 155) both in treated crops and nontreated habitats (hedgerows, grasslands, and cereals under organic farming).
Figure showing a conceptual diagram of socio-hydrological approach to bridge the gap between water resources and human well-being.
This paper presents challenges for water security in the three largest riverine islands in Asia, a socio-hydrology approach to manage water scarcity and human well-being, and an adaptive management cycle to implement socio-hydrology in the field.
Soil organic carbon (SOC) in croplands is a key property of soil quality for ensuring food security and agricultural sustainability, and also plays a central role in the global carbon (C) budget. When managed sustainably, soils may play a critical role in mitigating climate change by sequestering C and decreasing greenhouse gas emissions into the atmosphere. However, the magnitude and spatio-temporal patterns of global cropland SOC are far from well constrained due to high land surface heterogeneity, complicated mechanisms, and multiple influencing factors.
Anthropogenic climate change is altering the functioning of terrestrial ecosystems. Agricultural systems are particularly vulnerable to climate change as they are frequently disturbed by intensified management practices. This also threatens belowground organisms that are responsible for providing crucial ecosystem functions and services, such as nutrient cycling and plant disease suppression. Amongst these organisms, earthworms are of particular importance as they can modulate the effects of climate change on soil organisms by modifying the biotic and abiotic soil conditions.
Elsevier, Current Opinion in Environmental Sustainability, Volume 26-27, 1 June 2017
Accountability and adaptive management of recent global agreements such as the Sustainable Development Goals and Paris Climate Agreement, will in part rely on the ability to track progress toward the social and environmental targets they set. Current metrics and monitoring systems, however, are not yet up to the task. We argue that there is an imperative to consider principles of coherence (what to measure), standardization (how to measure) and decision-relevance (why to measure) when designing monitoring schemes if they are to be practical and useful.
Future climate change is usually projected by coupled earth system models under specific emission scenarios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM).

Pages