Greenhouse Gas

Pathways towards a defossilated sustainable power system for West Africa within the time horizon of 2015–2050 is researched, by applying linear optimisation modelling to determine the cost optimal generation mix to meet the demand based on assumed costs and technologies in 5-year intervals. Six scenarios were developed, which aimed at examining the impact of various policy constraints such as cross-border electricity trade and greenhouse gas emissions costs.
The artificial drainage of heavy textured gley soils is prevalent on pasture. Drainage of a soil profile reduces the water filled pore space (WFPS) in the upper soil horizons with consequences for N2 and N2O emissions, the fate of nitrogen (N), transformational processes and microbial and bacterial communities. The present intact soil column study with isotopically enriched fertiliser investigates all these aspects simultaneously under two WFPS treatments (80% (HS) and 55% (LS) saturation).
Elsevier, Agriculture, Ecosystems and Environment, Volume 292, 15 April 2020
Nitrous oxide (N2O) is the most important greenhouse gas produced by agricultural soils and is a byproduct of microbial nitrification and denitrification processes. The N2O emission rates depend on soil, climatic and management factors. The objectives of this study were i) to evaluate N2O emissions during a barley crop period and its subsequent barley-maize interperiod, under two management systems, and ii) to relate the N2O flux rates with soil mineral N content, waterfilled pore space (WFPS) and soil temperature.
Elsevier, Veterinary Anaesthesia and Analgesia, Volume 46, July 2019
Objective: Attention is drawn to the potential of global warming to influence the health and wellbeing of the human race. There is increasing public and governmental pressure on healthcare organisations to mitigate and adapt to the climate changes that are occurring. The science of anaesthetic agents such as nitrous oxide and the halogenated anaesthetic agents such as greenhouse gases and ozone-depleting agents is discussed and quantified. Additional environmental impacts of healthcare systems are explored.
Irrigation management may influence soil greenhouse gas emissions (GHG). Solid-set sprinkler irrigation systems allow to modify the irrigation time and frequency. The objective of this study was to quantify the effect of two irrigation times (daytime, D; nighttime, N)and two irrigation frequencies (low, L; high, H)on soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)emissions in a solid-set sprinkler-irrigated maize (Zea mays L.)field located in NE Spain during 2015 and 2016 growing seasons and the fallow period between growing seasons.
At the 21st session of the United Nations Framework Convention on Climate Change (UNFCCC, COP21), a voluntary action plan, the ‘4 per 1000 Initiative: Soils for Food Security and Climate’ was proposed under the Agenda for Action. The Initiative underlines the role of soil organic matter (SOM) in addressing the three-fold challenge of food and nutritional security, adaptation to climate change and mitigation of human-induced greenhouse gases (GHGs) emissions. It sets an ambitious aspirational target of a 4 per 1000 (i.e.
Western diets are characterised by a high intake of meat, dairy products and eggs, causing an intake of saturated fat and red meat in quantities that exceed dietary recommendations. The associated livestock production requires large areas of land and lead to high nitrogen and greenhouse gas emission levels. Although several studies have examined the potential impact of dietary changes on greenhouse gas emissions and land use, those on health, the agricultural system and other environmental aspects (such as nitrogen emissions) have only been studied to a limited extent.
This paper describes the methodology and data used to determine greenhouse gas (GHG) emissions attributable to ten cities or city-regions: Los Angeles County, Denver City and County, Greater Toronto, New York City, Greater London, Geneva Canton, Greater Prague, Barcelona, Cape Town and Bangkok. Equations for determining emissions are developed for contributions from: electricity; heating and industrial fuels; ground transportation fuels; air and marine fuels; industrial processes; and waste.

Pages