Heat

Spatial resolution of the geographical information system-based model
Background: Increasing air conditioner use for cooling indoor spaces has the potential to be a primary driver of global greenhouse gas emissions. Moving indoor air with residential fans can raise the temperature threshold at which air conditioning needs to be turned on to maintain the thermal comfort of building occupants. We investigate whether fans can be used to reduce air conditioner use and associated greenhouse gas emissions.
An Article in support of SDGs 3, 12, and 15, investigating the adverse effects of deforestation on working conditions and all-cause mortality, highlighting how conservation and restoration projects could help to achieve public health benefits.
Background: Associations between high and low temperatures and increases in mortality and morbidity have been previously reported, yet no comprehensive assessment of disease burden has been done. Therefore, we aimed to estimate the global and regional burden due to non-optimal temperature exposure. Methods: In part 1 of this study, we linked deaths to daily temperature estimates from the ERA5 reanalysis dataset.
Background: Europe has emerged as a major climate change hotspot, both in terms of an increase in seasonal averages and climate extremes. Projections of temperature-attributable mortality, however, have not been comprehensively reported for an extensive part of the continent. Therefore, we aim to estimate the future effect of climate change on temperature-attributable mortality across Europe. Methods: We did a time series analysis study.
Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression.
Background: Extreme heat exposure can lead to premature death. Climate change is expected to increase the frequency, intensity, and duration of extreme heat events, resulting in many additional heat-related deaths globally, as well as changing the nature of extreme cold events. At the same time, vulnerability to extreme heat has decreased over time, probably due to a combination of physiological, behavioural, infrastructural, and technological adaptations. We aimed to account for these changes in vulnerability and avoid overstated projections for temperature-related mortality.
Background: Various retrospective studies have reported on the increase of mortality risk due to higher diurnal temperature range (DTR). This study projects the effect of DTR on future mortality across 445 communities in 20 countries and regions. Methods: DTR-related mortality risk was estimated on the basis of the historical daily time-series of mortality and weather factors from Jan 1, 1985, to Dec 31, 2015, with data for 445 communities across 20 countries and regions, from the Multi-Country Multi-City Collaborative Research Network.
Elsevier, Current Opinion in Endocrine and Metabolic Research, Volume 11, April 2020
Climate change will expose mammals to an array of stressors, some new, and some with increased frequency and severity. Those stressors influence endocrine and metabolic function, with potential consequences for the survival and persistence of mammalian species. Here, we review the similar consequences of climate change on the physiological function of terrestrial mammals, including direct effects of increasing air temperatures and reduced water availability, as well as the indirect effect of reduced or unpredictable food supply.
Elsevier, Environment International, Volume 134, January 2020
Background: Car-dependent city planning has resulted in high levels of environmental pollution, sedentary lifestyles and increased vulnerability to the effects of climate change. The Barcelona Superblock model is an innovative urban and transport planning strategy that aims to reclaim public space for people, reduce motorized transport, promote sustainable mobility and active lifestyles, provide urban greening and mitigate effects of climate change. We estimated the health impacts of implementing this urban model across Barcelona.