Ionic Liquid

Elsevier, Current Research in Green and Sustainable Chemistry, Volume 3, June 2020
The successful conversion of lignocellulose into value-added products depends on overcoming the recalcitrance of its structure towards enzymatic digestion. The highly crosslinked structure of lignin, crystallinity of cellulose, and low digestibility of hemicellulose create the recalcitrance. Many studies have proved that an appropriate pretreatment method could enhance the digestibility of lignocellulosic biomass by weakening the strong network of its chemical bonds among the cellulose, hemicellulose, and lignin.
Beyond their traditional use as green solvents, new applications have become available for ionic liquids (ILs) in drug delivery. Their flexible tunability enables task-specific optimization of ILs at molecular level. Thus, ILs have been exploited to improve the solubility and permeability of drugs and relieve the polymorphic problems associated with crystalline active pharmaceutical ingredients (APIs). Controlled preparation of drug nanocarriers are also achieved by using ILs either as media or as functional agents.