Irrigation

This work established a framework to identify and analyze the technical feasibility of roofs for integrating urban agriculture, rainwater harvesting, and photovoltaic systems using various remote sensing. The framework was applied to a region north of Barcelona. Three levels of solar access requirements for tomatoes, leafy crops, strawberries, and microgreens were established. The case study included compact and disperse urban forms, residential and nonresidential building uses and various building typologies.
Produced water (PW) is the main waste stream generated from oil and gas extraction. Nowadays, half of the global PW volume is managed through environmentally controversial and expensive disposal practices, such as re-injection through deep wells. In dry areas such as in the Arabian Peninsula, PW could be reused to irrigate crops, creating environmental, economic and social value. However, the quality of most PWs remains challenging as their high salinity, sodicity and alkalinity can degrade soil fertility and crop yield.
Climate change and population growth generates a decrease in water availability around the world which can compromise the maintenance of sustainable agriculture. Thus, treated wastewater (TWW) became an alternative to minimize water shortage. However, this may indirectly affect the soil's microbial properties. In this study different soils irrigated for 0, 1, 8 and 20 years with TWW were sampled and from the east central region of Tunisia.
Soil and water salinity and associated problems are a major challenge for global food production. Strategies to cope with salinity include a better understanding of the impacts of temporal and spatial dynamics of salinity on soil water balances vis-à-vis evapotranspiration (ET) and devising optimal irrigation schedules and efficient methods. Both steady state and transient models are now available for predicting salinity effects on reduction of crop growth and means for its optimization.
Irrigation management may influence soil greenhouse gas emissions (GHG). Solid-set sprinkler irrigation systems allow to modify the irrigation time and frequency. The objective of this study was to quantify the effect of two irrigation times (daytime, D; nighttime, N)and two irrigation frequencies (low, L; high, H)on soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)emissions in a solid-set sprinkler-irrigated maize (Zea mays L.)field located in NE Spain during 2015 and 2016 growing seasons and the fallow period between growing seasons.
Water resources are an essential and determining factor for food production, ecosystem health, and socio-economic development. The socio–economic water cycling system is a complex adaptive system. Changes in the socio-economic system at the macro level, such as industrial transformation, technical progress, and water price reform, will have impacts on water resources utilization at the micro level.
Evaluations of food, energy and water (FEW) linkages are rapidly emerging in contemporary nexus studies. This paper demonstrates, from a food consumption perspective, the potential of life cycle thinking in understanding the complex and often “hidden” linkages between FEW systems. Our study evaluates the upstream virtual water and embodied energy in food consumption in the Tamar catchment, South West England, distinguishing between domestic production and imports origin.
An international review of stormwater regulation and practices, especially for low-exposure, landscape irrigation schemes in urban environments, was undertaken with a view to identifying what could be used in Alberta, Canada. A general lack of clear guidance and regulation to manage stormwater quality and potential public health risks was identified, which could be hindering the uptake of stormwater schemes generally.