PET is a ubiquitous material because of its robust properties. Today, less than 30% of PET bottles and few carpets are recycled in the United States, leading to the majority of PET being landfilled. The low PET reclamation rate is due to the fact that PET bottle recycling today is mechanical, resulting in a devalued product. Here, reclaimed PET (rPET) bottles are converted to fiberglass-reinforced plastics (FRPs), which sell for more than twice that of rPET. When monomers derivable from biomass are incorporated, rPET-FRPs with superior properties are achieved.
Sustainable use and management of nutrients is an important issue for food, energy and water systems. The close connections between the three systems, reflected by the “nexus” concept, warrant an integrated approach to nutrients management across the nexus. In this paper, dynamic modelling of nutrient flows in a local food-energy-water system is presented and applied to a simplified case study.