Wildfire is one of the most critical natural disasters that threaten wildlands and forest resources. Traditional firefighting systems, which are based on ground crew inspection, have several limits and can expose firefighters’ lives to danger. Thus, remote sensing technologies have become one of the most demanded strategies to fight against wildfires, especially UAV-based remote sensing technologies. They have been adopted to detect forest fires at their early stages, before becoming uncontrollable.
A cerebrovascular accident or stroke is the second commonest cause of death in the world. If it is not fatal, it can result in paralysis, sensory impairment and significant disability. Rehabilitation plays an important role to help survivors relearn lost skills and assist them to regain independence and thus ameliorate their quality of life. With the development of technology, researchers have come up with new solutions to assist clinicians in monitoring and assessing their patients; as well as making physiotherapy available to all.
Roaa Al Feel, an early-career researcher, discusses her passion for using data science for social good. She uses data to reflect living conditions of society, and in the paper published with Patterns in November, the team explores machine learning techniques for the detection of fake news around the Syrian war, demonstrating the efficacy of meta-learning techniques when tackling datasets of a modest size.
In this article, we pursue the automatic detection of fake news reporting on the Syrian war using machine learning and meta-learning. The proposed approach is based on a suite of features that include a given article's linguistic style; its level of subjectivity, sensationalism, and sectarianism; the strength of its attribution; and its consistency with other news articles from the same “media camp”. To train our models, we use FA-KES, a fake news dataset about the Syrian war.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain that ultimately results in the death of neurons and dementia. The prevalence of the disease in the world is increasing rapidly. In recent years, many studies have been done to automatically detect this disease from brain signals. Method: In this paper, the Hjorth parameters are used along with other common features to improve the AD detection accuracy from EEG signals in early stages.