Life Cycle Analysis

Elsevier,

Transportation Research Part D: Transport and Environment, Volume 102, January 2022

This paper cautions that the adoption of electric vehicles with the aim of reducing greenhouse gas emissions must balance that beneficial effect against increased water consumption. It recommends battery electric vehicles charged by solar energy as the best solution.
Producing food exerts pressures on the environment. Understanding the location and magnitude of food production is key to reducing the impacts of these pressures on nature and people. In this Perspective, Kuempel et al. outline an approach for integrating life cycle assessment and cumulative impact mapping data and methodologies to map the cumulative environmental pressure of food systems. The approach enables quantification of current and potential future environmental pressures, which are needed to reduce the net impact of feeding humanity.
Agricultural wastes are readily available in farming communities and can be utilised for off-grid electrification as an alternative to diesel generators. This work evaluates for the first time the life cycle environmental sustainability of these small-scale systems in the context of Southeast Asia. Rice and coconut residues are considered for direct combustion and gasification, and livestock manure for anaerobic digestion. Overall, anaerobic digestion is the best option for 14 out of 18 impacts estimated through life cycle assessment.
To fight against the biodiversity loss and to take advantage of ecosystem services that nature can offer, urban planners integrate green spaces in urban projects. However to assess green spaces, attention is generally paid to local biodiversity (i.e. “in situ”)which concerns the plot on which buildings are constructed. The biodiversity impacted outside the construction site (i.e. “ex situ”)which concerns the extraction of materials, transportation and waste, is rarely associated to the project assessment.
Evaluations of food, energy and water (FEW) linkages are rapidly emerging in contemporary nexus studies. This paper demonstrates, from a food consumption perspective, the potential of life cycle thinking in understanding the complex and often “hidden” linkages between FEW systems. Our study evaluates the upstream virtual water and embodied energy in food consumption in the Tamar catchment, South West England, distinguishing between domestic production and imports origin.
This paper addresses the interface of steering, research, and business operators' perspectives to bioenergy sustainability. Although bioenergy business operators are essential for sustainable development of bioenergy systems through implementation of sustainability criteria, their perspective to sustainability is rarely studied.
This paper describes the methodology and data used to determine greenhouse gas (GHG) emissions attributable to ten cities or city-regions: Los Angeles County, Denver City and County, Greater Toronto, New York City, Greater London, Geneva Canton, Greater Prague, Barcelona, Cape Town and Bangkok. Equations for determining emissions are developed for contributions from: electricity; heating and industrial fuels; ground transportation fuels; air and marine fuels; industrial processes; and waste.