Mass Spectrometry

Background & aims: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism.
Polycyclic aromatic hydrocarbons (PAHs) in water pose a serious threat to human health due to their toxic effects. This manuscript evaluates various drinking water treatment processes to remove these compounds from drinking water, in order to assure the quality of water intended for human consumption.

Physics and Chemistry of the Earth, Volume 122, June 2021

This article discusses the radiological safety of groundwater around a uranium mine in Namibia.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 113, April 2019
Microplastic (MP) studies in freshwater environments are gaining attention due to the huge quantities of plastic particles reported from lakes and rivers and the potential for negative impacts in these environments. Different units have been used to report MP densities, which makes it difficult to compare data and can result in reports of extremely high concentrations that do not reflect the original sample size. We recommended that the density of MPs from bulk samples be reported as number L −1 , while density from net samples should be reported as number m −3 .
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 112, March 2019
Nanoplastic is an emerging topic of relevance in environmental science. The analytical methods for microplastic have a particle size limit of a few micrometers so that new methods have to be developed to cover the nanometer range. This contribution reviews the progress in environmental nanoplastic analysis and critically evaluates which techniques from nanomaterial analysis may potentially be adapted to close the methodological gap. A roadmap is brought forward for the whole analytical process from sample treatment to particle characterization.