Pyrolysis converts biomass into liquid, gaseous and solid fuels. This work reviews the existing models for biomass pyrolysis, including kinetic, network and mechanistic models. The kinetic models are based on the global reaction mechanisms and have been extensively used for a wide range of biomass under various operating conditions. Major emphases have been on the network models as these models predict the structural changes during biomass pyrolysis. Key aspects of various network models include reaction schemes, structural characteristics and applications to CFD simulations.
Elsevier, Journal of Building Engineering, Volume 18, July 2018
The European Union implemented Ecodesign and Labelling Directives to support the market diffusion of energy efficient products. Accurate signals for consumers on energy efficiency (EE) are essential, as disinformation might lead to sub-optimal market allocations. Considering complex devices such as heat pumps (HPs), a conflict between simplicity of calculation on the one hand and accuracy on the other hand arises.
Elsevier, Resources, Conservation and Recycling, Volume 133, June 2018
Sustainable use and management of nutrients is an important issue for food, energy and water systems. The close connections between the three systems, reflected by the “nexus” concept, warrant an integrated approach to nutrients management across the nexus. In this paper, dynamic modelling of nutrient flows in a local food-energy-water system is presented and applied to a simplified case study.
Elsevier, Environmental Modelling and Software, Volume 62, December 01, 2014
Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda.