Nerve Cell Plasticity

Glucose-dependent Insulinotropic polypeptide (GIP) is a peptide hormone of the incretin family. It has growth factor properties and can re-activate energy utilization. In progressive neurodegenerative disorders such as Alzheimer's and Parkinson's disease, energy utilization is much reduced, and GIP has the potential to reverse this. Furthermore, GIP can reduce the inflammation response in the brain and reduce levels of pro-inflammatory cytokines. Tests in animal models of Alzheimer's and Parkinson's disease show good neuroprotective effects.
The use of advanced technological solutions (“neurotechnologies”) can improve the clinical outcomes of neurorehabilitation after stroke. Here, Micera et al. propose a paradigm shift that is based on a deep understanding of the basic mechanisms of natural stroke recovery and technology-assisted neurorehabilitation to improve the clinical effectiveness of neurotechnology.
Here, Nestler and Lüscher link addiction circuits to epigenetic mechanisms that are engaged by drug exposure or reflect life experience. These molecular alterations may not only explain the basis of drug-evoked synaptic plasticity, but may also help understand individual addiction vulnerability.
Threat processing is central to understanding debilitating fear- and trauma-related disorders such as posttraumatic stress disorder (PTSD). Progress has been made in understanding the neural circuits underlying the “engram” of threat or fear memory formation that complements a decades-old appreciation of the neurobiology of fear and threat involving hub structures such as the amygdala.
Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse.
Microglia are the predominant immune cells of the central nervous system (CNS) that exert key physiological roles required for maintaining CNS homeostasis, notably in response to chronic stress, as well as mediating synaptic plasticity, learning and memory. The repeated exposure to stress confers a higher risk of developing neurodegenerative diseases including sporadic Alzheimer's disease (AD).
Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, enhances the risk for cognitive decline in later life. Several epidemiological studies have now shown that environmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental conditions have attracted attention in this respect.
Physical activity and stress are both environmental modifiers of Alzheimer's disease (AD) risk. Animal studies of physical activity in AD models have largely reported positive results, however benefits are not always observed in either cognitive or pathological outcomes and inconsistencies among findings remain. Studies using forced exercise may increase stress and mitigate some of the benefit of physical activity in AD models, while voluntary exercise regimens may not achieve optimal intensity to provide robust benefit.