Rho-associated coiled-coil kinase (ROCK), a serine/threonine kinase regulated by the small GTPase RhoA, is involved in regulating cell migration, proliferation, and survival. Numerous studies have shown that the RhoA/ROCK signaling pathway can promote Alzheimer's disease (AD) occurrence. ROCK activation increases β-secretase activity and promotes amyloid-beta (Aβ) production; moreover, Aβ further activates ROCK. This is suggestive of a possible positive feedback role for Aβ and ROCK. Moreover, ROCK activation promotes the formation of neurofibrillary tangles and abnormal synaptic contraction.
Sporadic late-onset Alzheimer's disease (AD) is the most frequent cause of dementia associated with aging. Due to the progressive aging of the population, AD is becoming a healthcare burden of unprecedented proportions. Twenty years ago, it was reported that some indole molecules produced by the gut microbiota possess essential biological activities, including neuroprotection and antioxidant properties. Since then, research has cemented additional characteristics of these substances, including anti-inflammatory, immunoregulatory, and amyloid anti-aggregation features.
Alzheimer's disease (AD) is the foremost cause of dementia among other neurodegenerative diseases, leading to memory loss and cognitive deficits. AD has gained extensive attention in research for exploring possible interventions. One promising field is natural substances and compounds that could provide a wide range of neuroprotection against AD. This study aimed to investigate the possible effects of melatonin (MEL) and resveratrol (RES) in improving memory deficits in a sporadic mouse model of AD. Memory deficit was induced using AlCl3 and d-galactose for generating an AD mouse model.
Glucose-dependent Insulinotropic polypeptide (GIP) is a peptide hormone of the incretin family. It has growth factor properties and can re-activate energy utilization. In progressive neurodegenerative disorders such as Alzheimer's and Parkinson's disease, energy utilization is much reduced, and GIP has the potential to reverse this. Furthermore, GIP can reduce the inflammation response in the brain and reduce levels of pro-inflammatory cytokines. Tests in animal models of Alzheimer's and Parkinson's disease show good neuroprotective effects.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in cognitive function. Intracerebroventricular injection of streptozotocin (icv-STZ) has been used as an experimental model of Sporadic AD (SAD) in rodents and represents a promising tool for etiopathogenic analysis and evaluation of new therapeutic proposals for AD. The icv-STZ model shows many aspects of SAD abnormalities, resulting in decreased brain glucose and energy metabolism, cognitive impairment, oxidative stress, neuronal loss, and amyloid angiopathy.
Microglia are the predominant immune cells of the central nervous system (CNS) that exert key physiological roles required for maintaining CNS homeostasis, notably in response to chronic stress, as well as mediating synaptic plasticity, learning and memory. The repeated exposure to stress confers a higher risk of developing neurodegenerative diseases including sporadic Alzheimer's disease (AD).
Physical activity and stress are both environmental modifiers of Alzheimer's disease (AD) risk. Animal studies of physical activity in AD models have largely reported positive results, however benefits are not always observed in either cognitive or pathological outcomes and inconsistencies among findings remain. Studies using forced exercise may increase stress and mitigate some of the benefit of physical activity in AD models, while voluntary exercise regimens may not achieve optimal intensity to provide robust benefit.