The elevated air temperature of a city, urban heat island (UHI), increases the heat and pollution-related mortality, reduces the habitats' comfort and elevates the mean and peak energy demand of buildings. To countermeasure this unwanted phenomenon, a series of strategies and policies have been proposed and adapted to the cities. Various types of models are developed to evaluate the effectiveness of such strategies in addition to predict the UHI. This paper explains the compatibility of each type of model suitable for various objectives and scales of UHI studies.
Strategies are urgently required to ensure long term maintenance of current levels of global insect diversity. Yet insect diversity is huge and immensely complex, with many species and individuals making up an important part of compositional and functional biodiversity worldwide. As only a fifth of all insects have been scientifically described, we have the task of conserving largely what is unknown. Inevitably, this means that there are various challenges and shortfalls to address when we aim to future-proof insect diversity.