Hydrogen production from instant noodle wastewater by organic electrocatalyst coated on PVC surface

Elsevier, International Journal of Hydrogen Energy, Volume 45, Issue 23, 28 April 2020, Pages 12859-12873
Authors: 
N. Willy Satrio, Winarto, Sugiono, I.N.G. Wardana

The potential of electron-donating capability in methoxy groups of antioxidant containing protein (ACAP) as organic catalyst is restricted by its low isoelectric point. The goal of this study is to construct endure ACAP based metal-free organic catalyst for hydrogen production from electrolysis of noodle wastewater. The ACAP was coated thermomechanically on PVC sheet and its performance was tested during electrolysis of noodle wastewater. The morphological analysis, phase analysis, and elemental analysis of coated materials have shown a simultaneous pattern with electrolysis performances. The use of graphite flake to cover turmeric ACAP obstructs the electron to attack directly the positive charge of ACAP so that the electrocatalytic endurance increases while maintaining the hydrogen production rate. The combination of phenolic and enzymatic ACAPs is found to have the slowest reaction rate and lowest hydrogen production. The phenolic compound inhibits the enzymatic reaction.