Rice

Elsevier, Soil Biology and Biochemistry, Volume 143, April 2020
Improving rice yield potential is crucial for global food security. Taoyuan, China, is famous worldwide as a special ecosite for ultrahigh rice yield. Climatological factors affecting this phenomenon have been identified, but the potential molecular processes and environmental mechanisms promoting ultrahigh yield remain mysteries.
To what extent is scientific research related to societal needs? To answer this crucial question systematically we need to contrast indicators of research priorities with indicators of societal needs. We focus on rice research and technology between 1983 and 2012. We combine quantitative methods that allow investigation of the relation between ‘revealed’ research priorities and ‘revealed’ societal demands, measured respectively by research output (publications) and national accounts of rice use and farmers’ and consumers’ rice-related needs.
Evaluations of food, energy and water (FEW) linkages are rapidly emerging in contemporary nexus studies. This paper demonstrates, from a food consumption perspective, the potential of life cycle thinking in understanding the complex and often “hidden” linkages between FEW systems. Our study evaluates the upstream virtual water and embodied energy in food consumption in the Tamar catchment, South West England, distinguishing between domestic production and imports origin.