Smart Power Grids

Elsevier, Renewable and Sustainable Energy Reviews, Volume 120, March 2020
Smart home technologies refer to devices that provide some degree of digitally connected, automated, or enhanced services to building occupants. Smart homes have become central in recent technology and policy discussions about energy efficiency, climate change, and the sustainability of buildings. Nevertheless, do they truly promote sustainability goals? In addition, what sorts of benefits, risks, and policies do they entail?
Currently, renewable energy is rapidly developing across the world in response to technical, economic and environmental developments, as well as political and social initiatives. On the other hand, excessive penetration of distributed generation (DG) systems into electrical networks may lead to various problems and operational limit violations, such as over and under voltages, excessive line losses, overloading of transformers and feeders, protection failure and high harmonic distortion levels exceeding the limits of international standards.
Elsevier, Energy and Buildings, Volume 116, 15 March 2016
The smart grid's components
The smart grids are modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability. The role of buildings in this framework is very crucial. This paper addresses critical issues on smart grid technologies and the integration of buildings in this new power grid framework.
This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part of the implementation of overall sustainable energy systems.