Soil Biota

Urbanisation involves major changes in environmental conditions such as light, temperature, humidity and noise levels, but the effect of urbanisation on soil conditions and soil biodiversity has received less attention. The reported effects on species richness across a rural to urban landscapes are not unequivocal. Positive, negative and neutral effects have been found, but what is causing this ambiguity in the relationship between species richness and urbanisation is poorly understood.
Soil organic matter (OM) stratification and macro and micro fauna are both good indicators for the evaluation of soil ecological functioning, which is interrelated with nutrient cycles. To the best of the authors’ knowledge, responses of the degree of OM stratification with soil depth expressed as a ratio, and belowground biota to forest degradation and land cover changes have received little attention, particularly in northern Iran.
Anthropogenic climate change is altering the functioning of terrestrial ecosystems. Agricultural systems are particularly vulnerable to climate change as they are frequently disturbed by intensified management practices. This also threatens belowground organisms that are responsible for providing crucial ecosystem functions and services, such as nutrient cycling and plant disease suppression. Amongst these organisms, earthworms are of particular importance as they can modulate the effects of climate change on soil organisms by modifying the biotic and abiotic soil conditions.
This study assessed the carbon (C) budget and the C stocks in major compartments of the soil food web (bacteria, fungi, protists, nematodes, meso- and macrofauna) in an arable field with/without litter addition. The C stocks in the food web were more than three times higher in topsoil (0–10 cm) compared to subsoil (>40 cm). Microorganisms contained over 95% of food web C, with similar contributions of bacteria and fungi in topsoil. Litter addition did not alter C pools of soil biota after one growing season, except for the increase of fungi and fungal feeding nematodes in the topsoil.
Over the last two decades, there has been growing interest on the effects of agricultural practices on soil biology in Europe. As soil biota are known to fluctuate throughout the season and as agro-environmental conditions may influence the effect of agricultural practices on soil organisms, conclusions cannot be drawn from a single study. Therefore, integrating the results of many studies in order to identify general trends is required. The main objective of this study was to investigate how soil biota are affected by repeated applications of organic amendments (i.e.
Non-vascular plants such as mosses, lichens and especially microalgae are widespread in terrestrial ecosystems, but their contribution in the nutrient cycling and energy budget of soil food webs is generally neglected. Despite a relatively low total biomass, soil microalgae can be very productive and contribute to the diet of many soil decomposers such as Collembola. Using 15N/14N ratios we showed that phycophagy is of particular importance for Collembola in extreme habitats like rock surfaces, or seasonally during the wintertime.