Soil Organic Matter

Agroecosystems make up a significant portion of terrestrial ecosystems and receive a disproportionally high amount of terrestrial nitrogen inputs from fertilizer, leading to nitrogen loss and associated environmental problems. Integrated crop livestock systems, such as pasture-integrated crop rotations, may be more environmentally sustainable however the long-term effects of this management practice on soil microorganisms and nitrogen transformations are not well understood.
Soil organic matter (OM) stratification and macro and micro fauna are both good indicators for the evaluation of soil ecological functioning, which is interrelated with nutrient cycles. To the best of the authors’ knowledge, responses of the degree of OM stratification with soil depth expressed as a ratio, and belowground biota to forest degradation and land cover changes have received little attention, particularly in northern Iran.
Soil organic carbon (SOC) in croplands is a key property of soil quality for ensuring food security and agricultural sustainability, and also plays a central role in the global carbon (C) budget. When managed sustainably, soils may play a critical role in mitigating climate change by sequestering C and decreasing greenhouse gas emissions into the atmosphere. However, the magnitude and spatio-temporal patterns of global cropland SOC are far from well constrained due to high land surface heterogeneity, complicated mechanisms, and multiple influencing factors.
As a response to the worldwide challenge raised by soil degradation, Conservation Agriculture (CA) was proposed to help restoring the three main soil functions, i.e. carbon transformation, nutrient cycling and structure maintenance. However, there is still a lack of integrative studies that assess the overall impact of CA on soil health. To fill the gap, Biofunctool®, a set of in-field indicators, was developed to monitor changes in soil biological functioning.
At the 21st session of the United Nations Framework Convention on Climate Change (UNFCCC, COP21), a voluntary action plan, the ‘4 per 1000 Initiative: Soils for Food Security and Climate’ was proposed under the Agenda for Action. The Initiative underlines the role of soil organic matter (SOM) in addressing the three-fold challenge of food and nutritional security, adaptation to climate change and mitigation of human-induced greenhouse gases (GHGs) emissions. It sets an ambitious aspirational target of a 4 per 1000 (i.e.
Over the last two decades, there has been growing interest on the effects of agricultural practices on soil biology in Europe. As soil biota are known to fluctuate throughout the season and as agro-environmental conditions may influence the effect of agricultural practices on soil organisms, conclusions cannot be drawn from a single study. Therefore, integrating the results of many studies in order to identify general trends is required. The main objective of this study was to investigate how soil biota are affected by repeated applications of organic amendments (i.e.