The diversification of tropical pastures with legumes (trees) for increased forage and animal productivity has been advocated. Nevertheless, effects on soil quality and belowground biodiversity, and the implications for sustainable intensification remain poorly documented, particularly when cattle grazing is included in the study. We evaluated the impact of forage system diversification with herbaceous and woody legumes on soil properties and soil macrofauna communities and their spatial heterogeneity in a three-year-old field trial in Cauca Valley, Colombia.
Elucidating relationships between the soil food web, soil processes, and agroecosystem function is a critical step toward a more sustainable agriculture. Soil and crop management practices can alter these relationships, and their effects can persist even after imposing new management practices. In 2005, the Cornell Organic Grain Cropping Systems Experiment was established in central New York. Four cropping systems that varied in fertilizer inputs, tillage practices, and weed control were compared: High Fertility, Low Fertility, Enhanced Weed Management, Reduced Tillage.
Soil contamination by potentially toxic elements (PTEs) has led to adverse environmental impacts. In this review, we discussed remediation of PTEs contaminated soils through immobilization techniques using different soil amendments with respect to type of element, soil, and amendment, immobilization efficiency, underlying mechanisms, and field applicability. Soil amendments such as manure, compost, biochar, clay minerals, phosphate compounds, coal fly ash, and liming materials are widely used as immobilizing agents for PTEs.
As a response to the worldwide challenge raised by soil degradation, Conservation Agriculture (CA) was proposed to help restoring the three main soil functions, i.e. carbon transformation, nutrient cycling and structure maintenance. However, there is still a lack of integrative studies that assess the overall impact of CA on soil health. To fill the gap, Biofunctool®, a set of in-field indicators, was developed to monitor changes in soil biological functioning.
Soils host the vast majority of life on Earth including microorganisms and animals, and supporting all terrestrial vegetation. While soil organisms are pivotal for ecosystem functioning, the assemblages of different biota from a taxonomic and functional perspective, as well as how these different organisms interact, remains poorly known. We provide a brief overview of the taxonomic and functional diversity of all major groups of soil biota across different scales and organism sizes, ranging from viruses to prokaryotes and eukaryotes.
Multiple nutrient deficiencies related to severe soil fertility depletion have emerged as the major constraint to the sustainability of agriculture on a global scale. Use of biochar and biochar-compost mixtures from different alternative organic sources have been proposed as an option for improving soil fertility, restoring degraded land, and mitigating the emissions of greenhouse gasses associated with agriculture.
Soil health is the capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Anthropogenic reductions in soil health, and of individual components of soil quality, are a pressing ecological concern.