Produced water (PW) is the main waste stream generated from oil and gas extraction. Nowadays, half of the global PW volume is managed through environmentally controversial and expensive disposal practices, such as re-injection through deep wells. In dry areas such as in the Arabian Peninsula, PW could be reused to irrigate crops, creating environmental, economic and social value. However, the quality of most PWs remains challenging as their high salinity, sodicity and alkalinity can degrade soil fertility and crop yield.
The diversification of tropical pastures with legumes (trees) for increased forage and animal productivity has been advocated. Nevertheless, effects on soil quality and belowground biodiversity, and the implications for sustainable intensification remain poorly documented, particularly when cattle grazing is included in the study. We evaluated the impact of forage system diversification with herbaceous and woody legumes on soil properties and soil macrofauna communities and their spatial heterogeneity in a three-year-old field trial in Cauca Valley, Colombia.
The ploughing-induced compaction of the interface between topsoil and subsoil negatively affects the connectivity and continuity of the complex pore system through plough pans as artificial boundary resulting in water-logged conditions. The conversion of arable land into hayfield is an opportunity for breaking up plough pans and recovering pore networks in the long-term. The basic idea of the current study was to investigate the potential pore structure recovery effect by growing either deep-rooting alfalfa or shallow-rooting grass on former conventionally-tilled cropland.
Although the study of the effects of microplastics increased in the last years, terrestrial ecosystems remain less studied. In fact, the effects of microplastics in insects, the most abundant group of animals and major providers of key Ecosystem Services, are not well known despite the potential cascading negative effects on the ecosystems functioning in the habitats where they occur.