Thanks to fast learning and sustained growth, solar photovoltaics (PV) is today a highly cost-competitive technology, ready to contribute substantially to CO2 emissions mitigation. However, many scenarios assessing global decarbonization pathways, either based on integrated assessment models or partial-equilibrium models, fail to identify the key role that this technology could play, including far lower future PV capacity than that projected by the PV community.
This paper presents an analysis of the path towards a clean energy transition in rural areas, from the time that households do not have electricity access from any source, to when they get access to the national electricity; considering the intermediate access to an off-grid renewable technology, as well as the post-electrification years. For this, field household-level data are collected through surveys and electricity consumption measurements in rural Kenya.
Healthcare-associated infections cause a massive burden for the health care system and the patients. Although the standard sterilization protocol with saturated steam (>121°C and >205 kPa) is effective, generating high-temperature and high-pressure steam is challenging without reliable access to electricity or fuel. While abundant solar energy is readily available, utilizing sunlight to generate steam beyond 100°C requires costly and bulky optomechanical components. In this work, we developed a stationary solar thermal device capable of providing the required saturated steam.
A possibility of developing an environmental-friendly photovoltaic/thermal (PV/T) solar panel, which can shut high temperature radiation within a panel box, was experimentally confirmed. The panel has a decompression-boiling heat collector, which can absorb heat from the PV module and can keep the air and the cover glass inside the panel box at lower temperature by using lower boiling temperature of working fluid under vacuum condition. The panel also has an emboss-processed cover glass, which can totally reflect the high temperature heat radiation from the PV module within the panel box.
Global and regional trends indicate that energy demand will soon be covered by a widespread deployment of renewable energy sources. However, the weather and climate driven energy sources are characterized by a significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mismatch between demand and supply provided by renewable generation is a hybridization of two or more energy sources into a single power station (like wind-solar, solar-hydro or solar-wind-hydro).
Global warming, air pollution, and energy insecurity are three of the greatest problems facing humanity. To address these problems, we develop Green New Deal energy roadmaps for 143 countries. The roadmaps call for a 100% transition of all-purpose business-as-usual (BAU) energy to wind-water-solar (WWS) energy, efficiency, and storage by 2050 with at least 80% by 2030. Our studies on grid stability find that the countries, grouped into 24 regions, can match demand exactly from 2050 to 2052 with 100% WWS supply and storage. We also derive new cost metrics.
Soiling consists of the deposition of contaminants onto photovoltaic (PV) modules or mirrors and tubes of concentrated solar power systems (CSPs). It often results in a drastic reduction of power generation, which potentially renders an installation economically unviable and therefore must be mitigated. On the other hand, the corresponding costs for cleaning can significantly increase the price of energy generated. In this work, the importance of soiling is assessed for the global PV and CSP key markets.
Falling prices and significant technology developments currently drive an increased weather-dependent electricity production from renewables. In light of the changing climate, it is relevant to investigate to what extent climate change directly impacts future highly weather-dependent electricity systems. Here, we use three IPCC CO 2 concentration pathways for the period 2006–2100 with six high-resolution climate experiments for the European domain.
Solar photovoltaic modules have suddenly emerged as one of the cheapest options for bulk electricity supply. In a recent Energy Policy article, Kavlak et al. (2018) describe a methodology for quantifying causes of such cost movements and apply it to photovoltaic modules. Their approach, however, overlooks the “butterfly effect” of serendipitously interacting people and events, without which photovoltaics likely would still be expensive.
The future role of stationary electricity storage is perceived as highly uncertain. One reason is that most studies into the future cost of storage technologies focus on investment cost. An appropriate cost assessment must be based on the application-specific lifetime cost of storing electricity. We determine the levelized cost of storage (LCOS) for 9 technologies in 12 power system applications from 2015 to 2050 based on projected investment cost reductions and current performance parameters.