Solar Power Generation

This work established a framework to identify and analyze the technical feasibility of roofs for integrating urban agriculture, rainwater harvesting, and photovoltaic systems using various remote sensing. The framework was applied to a region north of Barcelona. Three levels of solar access requirements for tomatoes, leafy crops, strawberries, and microgreens were established. The case study included compact and disperse urban forms, residential and nonresidential building uses and various building typologies.
Healthcare-associated infections cause a massive burden for the health care system and the patients. Although the standard sterilization protocol with saturated steam (>121°C and >205 kPa) is effective, generating high-temperature and high-pressure steam is challenging without reliable access to electricity or fuel. While abundant solar energy is readily available, utilizing sunlight to generate steam beyond 100°C requires costly and bulky optomechanical components. In this work, we developed a stationary solar thermal device capable of providing the required saturated steam.
Elsevier, Renewable and Sustainable Energy Reviews, Volume 126, July 2020
The new European Commission plans to raise the greenhouse gas (GHG) emissions reduction target from 40% towards 55% by 2030 and make Europe the first climate-neutral continent by 2050. Achieving this will require accelerated energy efficiency measures, deeper electrification of sectors currently consuming conventional fuels and the deployment of more renewables, faster. This opinion article looks specifically at the role of photovoltaics (PV), based on scenarios from the Commission's 2018 long-term strategy (LTS) for energy and climate.
A possibility of developing an environmental-friendly photovoltaic/thermal (PV/T) solar panel, which can shut high temperature radiation within a panel box, was experimentally confirmed. The panel has a decompression-boiling heat collector, which can absorb heat from the PV module and can keep the air and the cover glass inside the panel box at lower temperature by using lower boiling temperature of working fluid under vacuum condition. The panel also has an emboss-processed cover glass, which can totally reflect the high temperature heat radiation from the PV module within the panel box.
Soiling consists of the deposition of contaminants onto photovoltaic (PV) modules or mirrors and tubes of concentrated solar power systems (CSPs). It often results in a drastic reduction of power generation, which potentially renders an installation economically unviable and therefore must be mitigated. On the other hand, the corresponding costs for cleaning can significantly increase the price of energy generated. In this work, the importance of soiling is assessed for the global PV and CSP key markets.
Metal halide perovskite materials have revolutionized the solution-processed solar cells and become the vanguard of research focus with an unprecedented improvement of power conversion efficiencies up to 23.3%, which pose a remarkable challenge to thin film and multicrystalline silicon photovoltaics. Nevertheless, for conventional perovskite solar cells based on lead, it is ineluctable to take the toxicity of lead and the long-term stability of the devices into consideration when the deployment of this technology in mass production is put on the agenda.
Falling prices and significant technology developments currently drive an increased weather-dependent electricity production from renewables. In light of the changing climate, it is relevant to investigate to what extent climate change directly impacts future highly weather-dependent electricity systems. Here, we use three IPCC CO 2 concentration pathways for the period 2006–2100 with six high-resolution climate experiments for the European domain.
Elsevier, Joule, Volume 3, 20 March 2019
Solar photovoltaic modules have suddenly emerged as one of the cheapest options for bulk electricity supply. In a recent Energy Policy article, Kavlak et al. (2018) describe a methodology for quantifying causes of such cost movements and apply it to photovoltaic modules. Their approach, however, overlooks the “butterfly effect” of serendipitously interacting people and events, without which photovoltaics likely would still be expensive.
Towns and cities worldwide emit significant pollution and are also increasingly affected by pollution's health and climate impacts. Local decision makers can alleviate these impacts by transitioning the energy they control to 100% clean, renewable energy and energy efficiency. This study develops roadmaps to transition 53 towns and cities in the United States, Canada, and Mexico to 100% wind, water, and sunlight (WWS) in all energy sectors by no later than 2050, with at least 80% by 2030.
The increase in population coupled with rising per capita income and associated change in consumption habits will put unprecedented stress on food, energy and water (FEW) resources. Sustainable and reliable fresh water supply is central for life and also for all sectors that support our existence. Uncertainty on water security prompted interest in investigation of renewable energy driven desalination processes. One particularly promising option is to produce fresh water from the two most abundant resources on earth: solar energy and seawater.

Pages