Solar Power

The increase in population coupled with rising per capita income and associated change in consumption habits will put unprecedented stress on food, energy and water (FEW) resources. Sustainable and reliable fresh water supply is central for life and also for all sectors that support our existence. Uncertainty on water security prompted interest in investigation of renewable energy driven desalination processes. One particularly promising option is to produce fresh water from the two most abundant resources on earth: solar energy and seawater.
100% in 139 countries
We develop roadmaps to transform the all-purpose energy infrastructures (electricity, transportation, heating/cooling, industry, agriculture/forestry/fishing) of 139 countries to ones powered by wind, water, and sunlight (WWS). The roadmaps envision 80% conversion by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces it ∼42.5% because the work: energy ratio of WWS electricity exceeds that of combustion (23.0%), WWS requires no mining, transporting, or processing of fuels (12.6%), and WWS end-use efficiency is assumed to exceed that of BAU (6.9%).
An effective response to climate change demands rapid replacement of fossil carbon energy sources. This must occur concurrently with an ongoing rise in total global energy consumption. While many modelled scenarios have been published claiming to show that a 100% renewable electricity system is achievable, there is no empirical or historical evidence that demonstrates that such systems are in fact feasible. Of the studies published to date, 24 have forecast regional, national or global energy requirements at sufficient detail to be considered potentially credible.
Capacity planners in developing countries frequently use screening curves and other system-independent metrics such as levelized cost of energy to guide investment decisions. This can lead to spurious conclusions about intermittent power sources such as solar and wind whose value may depend strongly on the characteristics of the system in which they are installed, including the overall generation mix and consumption patterns.
This paper presents a review of exergy analysis of solar thermal systems. It includes both various types of solar collectors and various applications of solar thermal systems. As solar collectors are an important technology when sustainability is considered, exergy analysis, which gives a more representative performance evaluation, is a valuable method to evaluate and compare possible configurations of these systems. It should be noted that this review is based on literature published in the last two years.