Species Richness

Landscape fragmentation and farming can affect the diversity of plants and pollinators harbored by linear landscape elements (LLE) in agroecosystems. To assess the role of these habitats in sustaining plant-pollinator communities, twenty portions of LLE (road verges) were studied during two consecutive field seasons in the Argentine Pampas.
Urbanisation involves major changes in environmental conditions such as light, temperature, humidity and noise levels, but the effect of urbanisation on soil conditions and soil biodiversity has received less attention. The reported effects on species richness across a rural to urban landscapes are not unequivocal. Positive, negative and neutral effects have been found, but what is causing this ambiguity in the relationship between species richness and urbanisation is poorly understood.
The IUCN (the International Union for Conservation of Nature) World Conservation Congress called for the full protection of 30% of each marine habitat globally and at least 30% of all the ocean. Thus, we quantitatively prioritized the top 30% areas for Marine Protected Areas (MPAs) globally using global scale measures of biodiversity from the species to ecosystem level.
Land-use intensification at the field and landscape scale is a strong driver for declining biodiversity and ecosystem service provision. Vineyards are characterised by non-productive inter-rows, which could potentially host diverse plant communities. Mulching, tillage or herbicides are used to mitigate the competition between vines and the inter-row vegetation.
Anthropogenic climate change is altering the functioning of terrestrial ecosystems. Agricultural systems are particularly vulnerable to climate change as they are frequently disturbed by intensified management practices. This also threatens belowground organisms that are responsible for providing crucial ecosystem functions and services, such as nutrient cycling and plant disease suppression. Amongst these organisms, earthworms are of particular importance as they can modulate the effects of climate change on soil organisms by modifying the biotic and abiotic soil conditions.
It has long been established that the spatial scale of inquiry affects the ecological patterns that are revealed. However, studies of the ecological drivers underlying the assembly of soil animal communities rarely adopt a multi-scale perspective. Here, we quantified the distribution of oribatid richness along a chronosequence of temperate hardwood forests in a deglaciated region of eastern North America and analyzed variation in oribatid community structure at two grain sizes: 0.1 m2 and 900 m2, and two spatial extents: 20–150 m and 80–420 km.
Plant diversity was shown to influence the N cycle, but plant diversity effects on other nutrients remain unclear. We tested whether plant species richness or the presence/absence of particular functional plant groups influences P partitioning among differently extractable pools in soil, P concentrations in soil solution, and exploitation of P resources (i.e.