Steam

Healthcare-associated infections cause a massive burden for the health care system and the patients. Although the standard sterilization protocol with saturated steam (>121°C and >205 kPa) is effective, generating high-temperature and high-pressure steam is challenging without reliable access to electricity or fuel. While abundant solar energy is readily available, utilizing sunlight to generate steam beyond 100°C requires costly and bulky optomechanical components. In this work, we developed a stationary solar thermal device capable of providing the required saturated steam.
The pyrolysis-catalytic steam reforming of six agricultural biomass waste samples as well as the three main components of biomass was investigated in a two stage fixed bed reactor. Pyrolysis of the biomass took place in the first stage followed by catalytic steam reforming of the evolved pyrolysis gases in the second stage catalytic reactor. The waste biomass samples were, rice husk, coconut shell, sugarcane bagasse, palm kernel shell, cotton stalk and wheat straw and the biomass components were, cellulose, hemicellulose (xylan) and lignin.
Elsevier, Journal of Cleaner Production, Volume 77, 15 August 2014
Analysis of steam and water losses in the Total Site (TS) utility system is critical in process industry. Makeup water plays an important role in maintaining the water balance in the steam and condensate systems. Total Site Heat Integration (TSHI) offers a solution to increase energy savings as well as energy efficiency and consequently, to promote sustainability. However, so far most studies on TSHI have not considered the water sensible heat in TS targeting; e.g. for Boiler Feed Water (BFW) preheating and steam superheating during steam generation.