The energy, exergy and economic analysis of indirect type solar dryer (ITSD) was performed while drying green chilli under forced and natural convection. Fans powered by PV panels were used for forced convection setup. The collector and drying efficiencies of the forced convection dryer were found to be 63.3% and 10.4% and the same was 53.84% and 8.90% in natural convection ITSD, respectively. The specific moisture extraction rate (SMER) of green chilli in ITSD was found to be 0.6526 and 0.5603 kg/kW-h under forced and natural convection, respectively.
A review of electricity access projects in rural areas reveals a number of unsustainable features. Each rural area can be very different with regard to the socioeconomic conditions and the dynamics between society and technology. This research is a comparative study to assess the impact of techno socioeconomic factors on the sustainability of two microhydro power projects. The assessment of sustainability projects was based on sustainable development indicators for rural electrification, considering technical, economic, social, environmental and institutional sustainability.
Among the tools used to measure sustainability in aquaculture, sets of indicators allow a holistic view of a system in its social, environmental, and economic dimensions. Approaches that align indicators with models such as the Drivers-Pressure-State-Impact-Response (DPSIR) framework can improve understanding of this sustainability. This study evaluated the sustainability of cage production systems for Nile tilapia in the Santa Cruz Reservoir, to determine whether a set of indicators used with the DPSIR conceptual model was effective to study the sustainability of the system.
Studies of waste-to-energy systems have applied a varying range of indicators to assess their sustainability. The sets of indicators prescribed were often based on the respective context and are therefore of varying emphasis. Through a literature review, this research aims to develop a framework of sustainability indicators that can serve as a reference for future research in waste-to-energy systems. Sustainability indicators and their underlying factors from the three pillars of sustainability were consolidated and structured under a proposed framework.