Sustainable Agriculture

This Personal View supports SDGs 3 and 6 by suggesting a scale-specific approach in which agricultural water use is embedded in a larger systems approach to allow the design of effective incentives to change and optimise agricultural water use.
Agriculture is fundamental to all three pillars of sustainability, environment, society, and economy. However, the definition of sustainable agriculture and the capacities to measure it remain elusive. Independent and transparent measurements of national sustainability are needed to gauge progress, encourage accountability, and inform policy. Here, we developed a Sustainable Agriculture Matrix (SAM) to quantify national performance indicators in agriculture and to investigate the trade-offs and synergies based on historical data for most countries of the world.
This synthesis paper presents the objectives, approach and cross-cutting results of the Latin American Deep Decarbonization Pathways project (DDP-LAC). It synthesizes and compares detailed national and sectoral deep decarbonization pathways (DDPs) to 2050 compatible with the Paris Agreement objectives and domestic development priorities in Argentina, Colombia, Costa Rica, Ecuador, Mexico and Peru.
Elsevier, Science of the Total Environment, Volume 648, 15 January 2019
One of the key Sustainable Development Goals (SDG) set by the United Nations (UN) aims by 2030 to “end hunger, achieve food security and improved nutrition and promote sustainable agriculture”. Fertilizers will play a pivotal role in achieving that goal given that ~90% of crop production growth is expected to come from higher yields and increased cropping intensity. However, materials-science research on fertilizers has received little attention, especially in Africa.
Multiple nutrient deficiencies related to severe soil fertility depletion have emerged as the major constraint to the sustainability of agriculture on a global scale. Use of biochar and biochar-compost mixtures from different alternative organic sources have been proposed as an option for improving soil fertility, restoring degraded land, and mitigating the emissions of greenhouse gasses associated with agriculture.
Elsevier, Environmental Science and Policy, Volume 55, January 01, 2016
Ecological impacts of industrial agriculture include significant greenhouse gas emissions, loss of biodiversity, widespread pollution by fertilizers and pesticides, soil loss and degradation, declining pollinators, and human health risks, among many others. A rapidly growing body of scientific research, however, suggests that farming systems designed and managed according to ecological principles can meet the food needs of society while addressing these pressing environmental and social issues.