Climate change


Reaching Net Zero, What It Takes to Solve the Global Climate Crisis, 2020, Pages 107-122

This book chapter advances SDG 11, 13, 17 by describing the Intergovernmental Panel on Climate Change and other reports on the need to limit global temperature increase to 2.0°C and preferably 1.5°C. The chapter outlines possible scenarios and introduces the concept of “net zero” by 2050, the essential elimination of greenhouse gas emissions. The chapter also discusses why this deadline is not achievable and presents a more likely scenario.

Patricia Ruiz-Ruiz, Adrián Estrada, Marcia Morales, Chapter 8 - Carbon dioxide capture and utilization using microalgae, Editor(s): Eduardo Jacob-Lopes, Mariana Manzoni Maroneze, Maria Isabel Queiroz, Leila Queiroz Zepka, Handbook of Microalgae-Based Processes and Products, Academic Press, 2020, Pages 185-206, ISBN 9780128185360,

This book chapter advances SDGs 7 and 13 by explaining how to capture carbon dioxide from the atmosphere using microalgae.
Pathways towards a defossilated sustainable power system for West Africa within the time horizon of 2015–2050 is researched, by applying linear optimisation modelling to determine the cost optimal generation mix to meet the demand based on assumed costs and technologies in 5-year intervals. Six scenarios were developed, which aimed at examining the impact of various policy constraints such as cross-border electricity trade and greenhouse gas emissions costs.
Elsevier, Renewable and Sustainable Energy Reviews, Volume 126, July 2020
The new European Commission plans to raise the greenhouse gas (GHG) emissions reduction target from 40% towards 55% by 2030 and make Europe the first climate-neutral continent by 2050. Achieving this will require accelerated energy efficiency measures, deeper electrification of sectors currently consuming conventional fuels and the deployment of more renewables, faster. This opinion article looks specifically at the role of photovoltaics (PV), based on scenarios from the Commission's 2018 long-term strategy (LTS) for energy and climate.
Humans, through agricultural fertilizer application, inject more reactive nitrogen (Nr) to terrestrial ecosystems than do natural sources. Ammonia volatilization is a major pathway of agricultural Nr loss. Using a process-based dynamic model, Shen et al. show that ammonia volatilization from agricultural land in the US will increase by up to 81% by the end of this century due to climate change alone, posing threats to food security, air quality, and ecosystem health, but mitigation strategies are available.
Elsevier, Global Environmental Change, Volume 63, July 2020
Recent research and policies recognize the importance of environmental defenders for global sustainability and emphasize their need for protection against violence and repression. However, effective support may benefit from a more systematic understanding of the underlying environmental conflicts, as well as from better knowledge on the factors that enable environmental defenders to mobilize successfully. We have created the global Environmental Justice Atlas to address this knowledge gap.
Typical thermographic images of adult Malayan sun bears taken shortly after rest and in a postabsorptive state at (A) TA = 23 °C, (B) TA = 28 °C, and (C) TA = 29 °C.
Thermoregulation in Malayan sun bears is not fully understood. Therefore, in this study the effect of meteorological variables on both behavioural and autonomic thermoregulatory mechanisms in sun bears was examined in order to identify temperature thresholds for the activation of various thermoregulatory mechanisms. Infrared thermography was used to non‒invasively determine body surface temperature (TS) distribution in relation to ambient temperature (TA) and to determine the thermoneutral zone (TNZ) of sun bears.

Reference Module in Earth Systems and Environmental Systems, Encyclopedia of the World`s Biomes, 2020

This book chapter addresses goals 15, 13 and 11 by discussing how deserts are biodiverse places where life thrives in the extreme.
This book chapter advances SDGs 12, 13 and 14 by discussing the current warming of the Arctic climate caused by human exploitation activities and the potential impact these activities may have in driving a number of marine mammals and other vertebrate species to extinction, unless strong conservation initiatives are put in place immediately.
The destruction of natural habitats is causing loss of biodiversity and ecosystem services. Although a “zero deforestation” is targeted, agriculture expansion caused by increasing human population and per capita consumption might boost the destruction of natural habitats in the coming decades. Here, we estimated the current and future extinction crisis in terrestrial ecoregions caused by habitat destruction and related this pattern with the current conservation efforts.