Climate change


Encyclopedia of Biodiversity (Second Edition), 2013, Pages 691-699

This book chapter addresses goals 13, 14 and 15 by discussing how global declines of amphibians refer to the phenomenon of the population declines and even extinctions of amphibian species around the world.

Encyclopedia of Biodiversity (Second Edition), 2013, Pages 681-707

This book chapter addresses goals 13, 14, and 15 by discussing the biodiversity of mammals, covering all ranges from a shrew to the blue whale.
Linking to Goals 12, 13, 14, and 15, this report sets baseline expectations for companies to provide proactive and constructive input to Governments to advocate for the creation of effective climate policies.
Wood residues from forest harvesting or disturbance wood from wildfire and insect outbreaks may be viewed as biomass "feedstocks" for bioenergy production, to help reduce our dependence on fossil fuels. Biomass removals of woody debris may have potential impacts on forest biodiversity and ecosystem function. Forest-floor small mammals, such as the southern red-backed vole (Myodes gapperi) that typically disappear after clearcut harvesting, may serve as ecological indicators of significant change in forest structure and function.
What is the best strategy to encourage research and development on new energy technologies in a market economy? What steps can ensure a rapid and efficient transition to an economy that has much lower net carbon emissions? This paper shows that, under limited conditions, a necessary and sufficient condition for an appropriate innovational environment is a universal, credible, and durable price on carbon emissions.
This paper describes the methodology and data used to determine greenhouse gas (GHG) emissions attributable to ten cities or city-regions: Los Angeles County, Denver City and County, Greater Toronto, New York City, Greater London, Geneva Canton, Greater Prague, Barcelona, Cape Town and Bangkok. Equations for determining emissions are developed for contributions from: electricity; heating and industrial fuels; ground transportation fuels; air and marine fuels; industrial processes; and waste.
Elsevier, General and Comparative Endocrinology, Volume 157, July 2008
All organisms respond to environmental cues that allow them to organize the timing and duration of life history stages that make up their life cycles. Superimposed on this predictable life cycle are unpredictable events that have the potential to be stressful. Environmental and social stresses have deleterious effects on life history stages such as migration, reproductive function and molt in vertebrates. Global climate change, human disturbance and endocrine disruption from pollutants are increasingly likely to pose additional stresses that could have a major impact on organisms.