More than a century has passed since pathological protein aggregates were first identified in the brains of patients with neurodegenerative diseases (NDDs). Yet, we still do not have effective therapies to treat or slow the progression of these devastating diseases or diagnostics for early detection and monitoring disease progression.
Elsevier, Behavioural Brain Research, Volume 414, 24 September 2021
Rho-associated coiled-coil kinase (ROCK), a serine/threonine kinase regulated by the small GTPase RhoA, is involved in regulating cell migration, proliferation, and survival. Numerous studies have shown that the RhoA/ROCK signaling pathway can promote Alzheimer's disease (AD) occurrence. ROCK activation increases β-secretase activity and promotes amyloid-beta (Aβ) production; moreover, Aβ further activates ROCK. This is suggestive of a possible positive feedback role for Aβ and ROCK. Moreover, ROCK activation promotes the formation of neurofibrillary tangles and abnormal synaptic contraction.
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made.
Elsevier, Mechanisms of Ageing and Development, Volume 190, September 2020
Diagnosis of Alzheimer's disease (AD) is often difficult because of distinct and subjective clinical features, especially in the early stage. FOXO3a protein present in the cognitive centre of brain in inferior temporal region and parahippocampus. FOXO3a can be a potential novel target against AD. AD, Mild Cognitive impairment (MCI) and Geriatric Control (GC) were recruited after diagnosis by clinical assessment, MRI, TauPET and FDG-PET. We have quantified serum FOXO3a by surface plasmon resonance (SPR) and compare with TauPET between of AD, MCI patients and GC.
Background: Recently, we reported that patients with mild cognitive impairment (MCI) harbor specific signature of bacteria in their gut and that a modified Mediterranean ketogenic diet (MMKD) improves Alzheimer's disease (AD) markers in cerebrospinal fluid (CSF) and the signatures of gut bacteria. However, other microbial population such as gut fungi (mycobiome) in relation to MCI/AD pathology, gut bacteria and diet remain unknown.
We examined whether cognitive reserve (CR) impacts level of, or rate of change in, biomarkers of Alzheimer's disease (AD) and small-vessel cerebrovascular disease in >250 individuals who were cognitively normal and middle-aged and older at the baseline. The four primary biomarker categories commonly examined in studies of AD were measured longitudinally: cerebrospinal fluid measures of amyloid (A) and tau (T); cerebrospinal fluid and neuroimaging measures of neuronal injury (N); and neuroimaging measures of white matter hyperintensities (WMHs) to assess cerebrovascular pathology (V).
Elsevier, Neurobiology of Sleep and Circadian Rhythms, Volume 2, 2017
Sleep disorders are prevalent in Alzheimer's disease (AD) and a major cause of institutionalization. Like AD pathology, sleep abnormalities can appear years before cognitive decline and may be predictive of dementia. A bidirectional relationship between sleep and amyloid β (Aβ) has been well established with disturbed sleep and increased wakefulness leading to increased Aβ production and decreased Aβ clearance; whereas Aβ deposition is associated with increased wakefulness and sleep disturbances. Aβ fluctuates with the sleep-wake cycle and is higher during wakefulness and lower during sleep.