Toxicity

Graphical abstract of article
Oxidation of engineered nanomaterials during application in various industrial sectors can alter their toxicity. Oxidized nanomaterials also have widespread industrial and biomedical applications. In this study, we evaluated the cardiopulmonary hazard posed by these nanomaterials using oxidized carbon black (CB) nanoparticles (CBox) as a model particle. Particle surface chemistry was characterized by X-ray photo electron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR).
Elsevier, Free Radical Biology and Medicine, Volume 151, 1 May 2020
Graphical abstract of article
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure.
Metal halide perovskite materials have revolutionized the solution-processed solar cells and become the vanguard of research focus with an unprecedented improvement of power conversion efficiencies up to 23.3%, which pose a remarkable challenge to thin film and multicrystalline silicon photovoltaics. Nevertheless, for conventional perovskite solar cells based on lead, it is ineluctable to take the toxicity of lead and the long-term stability of the devices into consideration when the deployment of this technology in mass production is put on the agenda.
Graphical abstract of article
Traffic emission is responsible for most small-sized particulate matter (PM) air pollution in urban areas. Several recent studies have indicated that traffic-related PM may aggravate kidney disease. Furthermore, exposure to particulate air pollution may be related to the risk of chronic kidney disease (CKD). However, the underlying molecular mechanisms have not been adequately addressed. In the present study, we studied the mechanisms of renal damage that might be associated with exposure to PM.
The detection of pharmaceuticals and endocrine disrupting compounds (EDCs), known as emerging contaminants (ECs), in the environment has attracted growing concern due to their toxicity and potential hazard to the ecosystems and humans. These contaminants are consumed at high quantities worldwide and they are released deliberately or accidentally into the water resources. The conventional treatment technologies that use biological processes cannot effectively remove these contaminants.