An Article in support of SDGs 2 and 12, assessing the financial costs of healthy and sustainable diets in countries with different income levels
Produced water (PW) is the main waste stream generated from oil and gas extraction. Nowadays, half of the global PW volume is managed through environmentally controversial and expensive disposal practices, such as re-injection through deep wells. In dry areas such as in the Arabian Peninsula, PW could be reused to irrigate crops, creating environmental, economic and social value. However, the quality of most PWs remains challenging as their high salinity, sodicity and alkalinity can degrade soil fertility and crop yield.
Plastics are a frequently observed component of marine debris and there is growing concern about microplastic (MP) ecotoxicity, and the impacts of additives, sorbed hazardous organic contaminants, heavy metals, and biofilm on MP surfaces. The relative importance of MP from different terrestrial and freshwater sources is poorly understood and limits our ability to develop best management practices. This review focuses on evidence and methods for source apportionment of MP in freshwater environments including the use of MP characteristics, mass balance techniques, and surface characteristics.
It is no secret to anyone living in Beirut or a similar modern city in a semi-arid tropical country in the summer that their home has become a concrete forest and an urban heat island. Old wood or stone houses and their gardens have been replaced by concrete towers and parking lots, in the name of development. The result is searing summer nights, a drastic loss of insect and avian biodiversity, and a large increase in energy usage for interior climate control. These problems are experienced in rapidly developing urban centers worldwide.
The existing methods for recycling electronic wastes such as the printed circuit boards (PCB), which contains a large number of components and elements, face significant challenges when considering environmentally benign and easily separable disposal targets. We report here a low-temperature ball milling method that breaks down PCBs all the way into nanoscale particles which further enables enhanced separation of its different base constituent materials that are the polymer, oxide, and metal.
In the first paper in this Series we assessed theoretical and empirical evidence and concluded that the health of people living in slums is a function not only of poverty but of intimately shared physical and social environments. In this paper we extend the theory of so-called neighbourhood effects. Slums offer high returns on investment because beneficial effects are shared across many people in densely populated neighbourhoods. Neighbourhood effects also help explain how and why the benefits of interventions vary between slum and non-slum spaces and between slums.
The European Union (EU) has had laws on the disposal of waste for over 30 years and laws concerning the environmental performance of products for over 20. However, these laws have not formed a cohesive whole - and that is about to change. December 2015 saw the European Commission (the body responsible for proposing new EU legislation) published its Circular Economy Package, with the stated objective of "closing the loop" of product lifecycles. This paper provides an overview of this package and demonstrates why the development of standards underpins future legislation.
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications.